-
1
-
-
33751182499
-
Application of inkjet printing to tissue engineering
-
T. Boland, T. Xu, and B. Damon Application of inkjet printing to tissue engineering Biotechnol J 1 9 2006 910 917
-
(2006)
Biotechnol J
, vol.1
, Issue.9
, pp. 910-917
-
-
Boland, T.1
Xu, T.2
Damon, B.3
-
2
-
-
0042061223
-
Hydrogels for tissue engineering: Scaffold design variables and applications
-
DOI 10.1016/S0142-9612(03)00340-5
-
J.L. Drury, and D.J. Mooney Hydrogels for tissue engineering: scaffold design variables and applications Biomaterials 24 24 2003 4337 4351 (Pubitemid 36960132)
-
(2003)
Biomaterials
, vol.24
, Issue.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
3
-
-
3042782581
-
Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
-
DOI 10.1016/j.tibtech.2004.05.005, PII S0167779904001428
-
D.W. Hutmacher, M. Sittinger, and M.V. Risbud Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems Trends Biotechnol 22 7 2004 354 362 (Pubitemid 38887544)
-
(2004)
Trends in Biotechnology
, vol.22
, Issue.7
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
4
-
-
60549108145
-
Organ printing: Tissue spheroids as building blocks
-
V. Mironov, R.P. Visconti, and V. Kasyanov Organ printing: tissue spheroids as building blocks Biomaterials 30 12 2009 2164 2174
-
(2009)
Biomaterials
, vol.30
, Issue.12
, pp. 2164-2174
-
-
Mironov, V.1
Visconti, R.P.2
Kasyanov, V.3
-
5
-
-
33750953664
-
Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units
-
DOI 10.1089/ten.2006.12.2151
-
J.M. Kelm, V. Djonov, and L.M. Ittner Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units Tissue Eng 12 8 2006 2151 2160 (Pubitemid 44734974)
-
(2006)
Tissue Engineering
, vol.12
, Issue.8
, pp. 2151-2160
-
-
Kelm, J.M.1
Djonov, V.2
Ittner, L.M.3
Fluri, D.4
Born, W.5
Hoerstrup, S.P.6
Fussenegger, M.7
-
6
-
-
84880237098
-
Bioprinting towards organ fabrication: Challenges and future trends
-
I. Ozbolat, and Y. Yu Bioprinting towards organ fabrication: challenges and future trends IEEE Trans Biomed Eng 60 3 2013 691 699
-
(2013)
IEEE Trans Biomed Eng
, vol.60
, Issue.3
, pp. 691-699
-
-
Ozbolat, I.1
Yu, Y.2
-
8
-
-
84888340494
-
-
Organovo; Organovo, 2012
-
Organovo, 2012, "Science Overview," Organovo; 2012(9/25).
-
(2012)
Science Overview
, vol.9-25
-
-
-
10
-
-
17744368883
-
Direct writing of chitosan scaffolds using a robotic system
-
DOI 10.1108/13552540510589458
-
L. Geng, W. Feng, and D.W. Hutmacher Direct writing of chitosan scaffolds using a robotic system Rapid Prototyp J 11 2 2005 90 97 (Pubitemid 40574292)
-
(2005)
Rapid Prototyping Journal
, vol.11
, Issue.2
, pp. 90-97
-
-
Geng, L.1
Feng, W.2
Hutmacher, D.W.3
Wong, Y.S.4
Loh, H.T.5
Fuh, J.Y.H.6
-
11
-
-
0037545705
-
Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition
-
Y. Yan, Z. Xiong, and Y. Hu Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition Mater Lett 57 18 2003 2623 2628
-
(2003)
Mater Lett
, vol.57
, Issue.18
, pp. 2623-2628
-
-
Yan, Y.1
Xiong, Z.2
Hu, Y.3
-
12
-
-
65649152928
-
Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology
-
S. Li, Z. Xiong, and X. Wang Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology J Bioact Compat Polym 24 3 2009 249 265
-
(2009)
J Bioact Compat Polym
, vol.24
, Issue.3
, pp. 249-265
-
-
Li, S.1
Xiong, Z.2
Wang, X.3
-
13
-
-
33847093738
-
Biopolymer deposition for freeform fabrication of hydrogel tissue constructs
-
DOI 10.1016/j.msec.2006.05.023, PII S0928493106001408, Next Generation Biomaterials
-
S. Khalil, and W. Sun Biopolymer deposition for freeform fabrication of hydrogel tissue constructs Mater Sci Eng C 27 3 2007 469 478 (Pubitemid 46281618)
-
(2007)
Materials Science and Engineering C
, vol.27
, Issue.3
, pp. 469-478
-
-
Khalil, S.1
Sun, W.2
-
14
-
-
84870316597
-
Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
-
T. Xu, K.W. Binder, and M.Z. Albanna Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications Biofabrication 5 1 2013 015001
-
(2013)
Biofabrication
, vol.5
, Issue.1
, pp. 015001
-
-
Xu, T.1
Binder, K.W.2
Albanna, M.Z.3
-
15
-
-
78650325718
-
Engineered tissue scaffolds with variational porous architecture
-
A. Khoda, I.T. Ozbolat, and B. Koc Engineered tissue scaffolds with variational porous architecture J Biomech Eng 133 1 2011 011001
-
(2011)
J Biomech Eng
, vol.133
, Issue.1
, pp. 011001
-
-
Khoda, A.1
Ozbolat, I.T.2
Koc, B.3
-
17
-
-
84877736127
-
Characterization of printable cellular micro-fluidic channels for tissue engineering
-
Y. Zhang, Y. Yu, and H. Chen Characterization of printable cellular micro-fluidic channels for tissue engineering Biofabrication 5 2 2013 025004
-
(2013)
Biofabrication
, vol.5
, Issue.2
, pp. 025004
-
-
Zhang, Y.1
Yu, Y.2
Chen, H.3
-
18
-
-
84869156829
-
Path planning for functionally graded materials in hollow tissue scaffold printing
-
November 11-17, Denver, Colorado
-
Ozbolat IT. Path planning for functionally graded materials in hollow tissue scaffold printing. International mechanical engineering congress & exposition (IMECE); November 11-17, Denver, Colorado; 2011.
-
(2011)
International mechanical engineering congress & exposition (IMECE)
-
-
Ozbolat, I.T.1
|