메뉴 건너뛰기




Volumn 30, Issue 3, 2014, Pages 295-304

Development of 'Multi-arm Bioprinter' for hybrid biofabrication of tissue engineering constructs

Author keywords

Additive manufacturing; Bioprinting; Tissue engineering

Indexed keywords

3D PRINTERS; AGRICULTURAL ROBOTS; CELLS; CYTOLOGY; DEPOSITION; NOZZLES; TISSUE;

EID: 84888369158     PISSN: 07365845     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rcim.2013.10.005     Document Type: Article
Times cited : (155)

References (18)
  • 1
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • T. Boland, T. Xu, and B. Damon Application of inkjet printing to tissue engineering Biotechnol J 1 9 2006 910 917
    • (2006) Biotechnol J , vol.1 , Issue.9 , pp. 910-917
    • Boland, T.1    Xu, T.2    Damon, B.3
  • 2
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: Scaffold design variables and applications
    • DOI 10.1016/S0142-9612(03)00340-5
    • J.L. Drury, and D.J. Mooney Hydrogels for tissue engineering: scaffold design variables and applications Biomaterials 24 24 2003 4337 4351 (Pubitemid 36960132)
    • (2003) Biomaterials , vol.24 , Issue.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 3
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
    • DOI 10.1016/j.tibtech.2004.05.005, PII S0167779904001428
    • D.W. Hutmacher, M. Sittinger, and M.V. Risbud Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems Trends Biotechnol 22 7 2004 354 362 (Pubitemid 38887544)
    • (2004) Trends in Biotechnology , vol.22 , Issue.7 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 4
    • 60549108145 scopus 로고    scopus 로고
    • Organ printing: Tissue spheroids as building blocks
    • V. Mironov, R.P. Visconti, and V. Kasyanov Organ printing: tissue spheroids as building blocks Biomaterials 30 12 2009 2164 2174
    • (2009) Biomaterials , vol.30 , Issue.12 , pp. 2164-2174
    • Mironov, V.1    Visconti, R.P.2    Kasyanov, V.3
  • 6
    • 84880237098 scopus 로고    scopus 로고
    • Bioprinting towards organ fabrication: Challenges and future trends
    • I. Ozbolat, and Y. Yu Bioprinting towards organ fabrication: challenges and future trends IEEE Trans Biomed Eng 60 3 2013 691 699
    • (2013) IEEE Trans Biomed Eng , vol.60 , Issue.3 , pp. 691-699
    • Ozbolat, I.1    Yu, Y.2
  • 8
    • 84888340494 scopus 로고    scopus 로고
    • Organovo; Organovo, 2012
    • Organovo, 2012, "Science Overview," Organovo; 2012(9/25).
    • (2012) Science Overview , vol.9-25
  • 11
    • 0037545705 scopus 로고    scopus 로고
    • Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition
    • Y. Yan, Z. Xiong, and Y. Hu Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition Mater Lett 57 18 2003 2623 2628
    • (2003) Mater Lett , vol.57 , Issue.18 , pp. 2623-2628
    • Yan, Y.1    Xiong, Z.2    Hu, Y.3
  • 12
    • 65649152928 scopus 로고    scopus 로고
    • Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology
    • S. Li, Z. Xiong, and X. Wang Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology J Bioact Compat Polym 24 3 2009 249 265
    • (2009) J Bioact Compat Polym , vol.24 , Issue.3 , pp. 249-265
    • Li, S.1    Xiong, Z.2    Wang, X.3
  • 13
    • 33847093738 scopus 로고    scopus 로고
    • Biopolymer deposition for freeform fabrication of hydrogel tissue constructs
    • DOI 10.1016/j.msec.2006.05.023, PII S0928493106001408, Next Generation Biomaterials
    • S. Khalil, and W. Sun Biopolymer deposition for freeform fabrication of hydrogel tissue constructs Mater Sci Eng C 27 3 2007 469 478 (Pubitemid 46281618)
    • (2007) Materials Science and Engineering C , vol.27 , Issue.3 , pp. 469-478
    • Khalil, S.1    Sun, W.2
  • 14
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • T. Xu, K.W. Binder, and M.Z. Albanna Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications Biofabrication 5 1 2013 015001
    • (2013) Biofabrication , vol.5 , Issue.1 , pp. 015001
    • Xu, T.1    Binder, K.W.2    Albanna, M.Z.3
  • 15
    • 78650325718 scopus 로고    scopus 로고
    • Engineered tissue scaffolds with variational porous architecture
    • A. Khoda, I.T. Ozbolat, and B. Koc Engineered tissue scaffolds with variational porous architecture J Biomech Eng 133 1 2011 011001
    • (2011) J Biomech Eng , vol.133 , Issue.1 , pp. 011001
    • Khoda, A.1    Ozbolat, I.T.2    Koc, B.3
  • 17
    • 84877736127 scopus 로고    scopus 로고
    • Characterization of printable cellular micro-fluidic channels for tissue engineering
    • Y. Zhang, Y. Yu, and H. Chen Characterization of printable cellular micro-fluidic channels for tissue engineering Biofabrication 5 2 2013 025004
    • (2013) Biofabrication , vol.5 , Issue.2 , pp. 025004
    • Zhang, Y.1    Yu, Y.2    Chen, H.3
  • 18
    • 84869156829 scopus 로고    scopus 로고
    • Path planning for functionally graded materials in hollow tissue scaffold printing
    • November 11-17, Denver, Colorado
    • Ozbolat IT. Path planning for functionally graded materials in hollow tissue scaffold printing. International mechanical engineering congress & exposition (IMECE); November 11-17, Denver, Colorado; 2011.
    • (2011) International mechanical engineering congress & exposition (IMECE)
    • Ozbolat, I.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.