메뉴 건너뛰기




Volumn 33, Issue 9, 2015, Pages 504-513

Bioprinting for cancer research

Author keywords

[No Author keywords available]

Indexed keywords

CELLS; CYTOLOGY; DIAGNOSIS; PHYSIOLOGICAL MODELS;

EID: 84940450098     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.06.007     Document Type: Review
Times cited : (310)

References (89)
  • 1
    • 84896459209 scopus 로고    scopus 로고
    • IARC, B.W. Stewart, C.P. Wild (Eds.)
    • (2014) World Cancer Report 2014, IARC. B.W. Stewart, C.P. Wild (Eds.).
    • (2014) (2014) World Cancer Report
  • 2
    • 79951497419 scopus 로고    scopus 로고
    • The genomic complexity of primary human prostate cancer
    • Berger M.F., et al. The genomic complexity of primary human prostate cancer. Nature 2011, 470:214-220.
    • (2011) Nature , vol.470 , pp. 214-220
    • Berger, M.F.1
  • 3
    • 77954526989 scopus 로고    scopus 로고
    • Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma
    • Palanisamy N., et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 2010, 16:793-798.
    • (2010) Nat. Med. , vol.16 , pp. 793-798
    • Palanisamy, N.1
  • 4
    • 78650012935 scopus 로고    scopus 로고
    • Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia
    • Ridky T.W., et al. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat. Med. 2010, 16:1450-1455.
    • (2010) Nat. Med. , vol.16 , pp. 1450-1455
    • Ridky, T.W.1
  • 5
    • 21644487903 scopus 로고    scopus 로고
    • Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study
    • Ghosh S., et al. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J. Cell. Physiol. 2005, 204:522-531.
    • (2005) J. Cell. Physiol. , vol.204 , pp. 522-531
    • Ghosh, S.1
  • 6
    • 84880264772 scopus 로고    scopus 로고
    • Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model
    • Kim B.J., et al. Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE 2013, 8:e68422.
    • (2013) PLoS ONE , vol.8 , pp. e68422
    • Kim, B.J.1
  • 7
    • 84865293346 scopus 로고    scopus 로고
    • Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function
    • Zervantonakis I.K., et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:13515-13520.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 13515-13520
    • Zervantonakis, I.K.1
  • 8
    • 75749146306 scopus 로고    scopus 로고
    • Plasticity of cell migration: a multiscale tuning model
    • Friedl P., Wolf K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 2010, 188:11-19.
    • (2010) J. Cell Biol. , vol.188 , pp. 11-19
    • Friedl, P.1    Wolf, K.2
  • 9
    • 59249106851 scopus 로고    scopus 로고
    • Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro
    • Li C.L., et al. Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro. Oncol. Rep. 2008, 20:1465-1471.
    • (2008) Oncol. Rep. , vol.20 , pp. 1465-1471
    • Li, C.L.1
  • 10
    • 0031005382 scopus 로고    scopus 로고
    • Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers
    • Chopra V., et al. Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. In Vitro Cell. Dev. Biol. Anim. 1997, 33:432-442.
    • (1997) In Vitro Cell. Dev. Biol. Anim. , vol.33 , pp. 432-442
    • Chopra, V.1
  • 11
    • 77956187576 scopus 로고    scopus 로고
    • Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells
    • Loessner D., et al. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010, 31:8494-8506.
    • (2010) Biomaterials , vol.31 , pp. 8494-8506
    • Loessner, D.1
  • 12
    • 84899560969 scopus 로고    scopus 로고
    • Three-dimensional printing of HeLa cells for cervical tumor model in vitro
    • Zhao Y., et al. Three-dimensional printing of HeLa cells for cervical tumor model in vitro. Biofabrication 2014, 6:035001.
    • (2014) Biofabrication , vol.6 , pp. 035001
    • Zhao, Y.1
  • 13
    • 84899513546 scopus 로고    scopus 로고
    • Three-dimensional in vitro cancer models: a short review
    • Wang C., et al. Three-dimensional in vitro cancer models: a short review. Biofabrication 2014, 6:022001.
    • (2014) Biofabrication , vol.6 , pp. 022001
    • Wang, C.1
  • 14
    • 0026391429 scopus 로고
    • Material incress manufacturing by rapid prototyping techniques
    • Kruth J-P. Material incress manufacturing by rapid prototyping techniques. CIRP Ann. Manuf. Techn. 1991, 40:603-614.
    • (1991) CIRP Ann. Manuf. Techn. , vol.40 , pp. 603-614
    • Kruth, J.-P.1
  • 15
    • 84940454627 scopus 로고    scopus 로고
    • Method of and apparatus for forming a solid three-dimensional article from a liquid medium, WO 1991012120 A1
    • Heller, T.B. et al. Quadrax Corp. Method of and apparatus for forming a solid three-dimensional article from a liquid medium, WO 1991012120 A1.
    • Heller, T.B.1
  • 16
    • 84857583032 scopus 로고    scopus 로고
    • Layer by layer
    • Freedman D.H. Layer by layer. Technol. Rev. 2012, 115:50-53.
    • (2012) Technol. Rev. , vol.115 , pp. 50-53
    • Freedman, D.H.1
  • 17
    • 34548071012 scopus 로고    scopus 로고
    • Single cell epitaxy by acoustic picolitre droplets
    • Demirci U., Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab Chip 2007, 7:1139-1145.
    • (2007) Lab Chip , vol.7 , pp. 1139-1145
    • Demirci, U.1    Montesano, G.2
  • 18
    • 0242668870 scopus 로고    scopus 로고
    • Organ printing: computer-aided jet-based 3D tissue engineering
    • Mironov V., et al. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003, 21:157-161.
    • (2003) Trends Biotechnol. , vol.21 , pp. 157-161
    • Mironov, V.1
  • 19
    • 77951247563 scopus 로고    scopus 로고
    • Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets
    • Moon S., et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods 2010, 16:157-166.
    • (2010) Tissue Eng. Part C Methods , vol.16 , pp. 157-166
    • Moon, S.1
  • 20
    • 78650261924 scopus 로고    scopus 로고
    • A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation
    • Xu F., et al. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication 2010, 2:014105.
    • (2010) Biofabrication , vol.2 , pp. 014105
    • Xu, F.1
  • 21
    • 38449109938 scopus 로고    scopus 로고
    • Organ printing: promises and challenges
    • Mironov V., et al. Organ printing: promises and challenges. Regen. Med. 2008, 3:93-103.
    • (2008) Regen. Med. , vol.3 , pp. 93-103
    • Mironov, V.1
  • 22
    • 82055184089 scopus 로고    scopus 로고
    • Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
    • Hamid Q., et al. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device. Biofabrication 2011, 3:034109.
    • (2011) Biofabrication , vol.3 , pp. 034109
    • Hamid, Q.1
  • 23
    • 84871703021 scopus 로고    scopus 로고
    • Bioprinting for stem cell research
    • Tasoglu S., Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013, 31:10-19.
    • (2013) Trends Biotechnol. , vol.31 , pp. 10-19
    • Tasoglu, S.1    Demirci, U.2
  • 24
    • 84893321308 scopus 로고    scopus 로고
    • Untethered micro-robotic coding of three-dimensional material composition
    • Tasoglu S., et al. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 2014, 5:3124.
    • (2014) Nat. Commun. , vol.5 , pp. 3124
    • Tasoglu, S.1
  • 25
    • 84908443474 scopus 로고    scopus 로고
    • Guided and magnetic self-assembly of tunable magnetoceptive gels
    • Tasoglu S., et al. Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun. 2014, 5:4702.
    • (2014) Nat. Commun. , vol.5 , pp. 4702
    • Tasoglu, S.1
  • 26
    • 84948093469 scopus 로고    scopus 로고
    • Magnetic levitational assembly for living material fabrication
    • Published online April 14, 2015
    • Tasoglu S., et al. Magnetic levitational assembly for living material fabrication. Adv. Healthc. Mater. 2015, Published online April 14, 2015. 10.1002/adhm.201500092.
    • (2015) Adv. Healthc. Mater.
    • Tasoglu, S.1
  • 27
    • 84928065581 scopus 로고    scopus 로고
    • Multiscale assembly for tissue engineering and regenerative medicine
    • Guven S., et al. Multiscale assembly for tissue engineering and regenerative medicine. Trends Biotechnol. 2015, 33:269-279.
    • (2015) Trends Biotechnol. , vol.33 , pp. 269-279
    • Guven, S.1
  • 28
    • 84908551924 scopus 로고    scopus 로고
    • Microscale assembly directed by liquid-based template
    • Chen P., et al. Microscale assembly directed by liquid-based template. Adv. Mater. 2014, 26:5936-5941.
    • (2014) Adv. Mater. , vol.26 , pp. 5936-5941
    • Chen, P.1
  • 29
    • 84874046572 scopus 로고    scopus 로고
    • Paramagnetic levitational assembly of hydrogels
    • 1081
    • Tasoglu S., et al. Paramagnetic levitational assembly of hydrogels. Adv. Mater. 2013, 25:1137-1143. 1081.
    • (2013) Adv. Mater. , vol.25 , pp. 1137-1143
    • Tasoglu, S.1
  • 30
    • 80054713215 scopus 로고    scopus 로고
    • Three-dimensional magnetic assembly of microscale hydrogels
    • Xu F., et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater. 2011, 23:4254-4260.
    • (2011) Adv. Mater. , vol.23 , pp. 4254-4260
    • Xu, F.1
  • 31
    • 80051822767 scopus 로고    scopus 로고
    • The assembly of cell-encapsulating microscale hydrogels using acoustic waves
    • Xu F., et al. The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials 2011, 32:7847-7855.
    • (2011) Biomaterials , vol.32 , pp. 7847-7855
    • Xu, F.1
  • 32
    • 84871679056 scopus 로고    scopus 로고
    • Emerging technologies for assembly of microscale hydrogels
    • Gurkan U.A., et al. Emerging technologies for assembly of microscale hydrogels. Adv. Healthc. Mater. 2012, 1:149-158.
    • (2012) Adv. Healthc. Mater. , vol.1 , pp. 149-158
    • Gurkan, U.A.1
  • 33
    • 84884368877 scopus 로고    scopus 로고
    • Influence of tumour micro-environment heterogeneity on therapeutic response
    • Junttila M.R., de Sauvage F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501:346-354.
    • (2013) Nature , vol.501 , pp. 346-354
    • Junttila, M.R.1    de Sauvage, F.J.2
  • 34
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland T., et al. Application of inkjet printing to tissue engineering. Biotechnol. J. 2006, 1:910-917.
    • (2006) Biotechnol. J. , vol.1 , pp. 910-917
    • Boland, T.1
  • 35
    • 31044445708 scopus 로고    scopus 로고
    • Biocompatible inkjet printing technique for designed seeding of individual living cells
    • Nakamura M., et al. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005, 11:1658-1666.
    • (2005) Tissue Eng. , vol.11 , pp. 1658-1666
    • Nakamura, M.1
  • 36
    • 67650491820 scopus 로고    scopus 로고
    • Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications
    • Fedorovich N.E., et al. Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules 2009, 10:1689-1696.
    • (2009) Biomacromolecules , vol.10 , pp. 1689-1696
    • Fedorovich, N.E.1
  • 37
    • 79958074853 scopus 로고    scopus 로고
    • Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
    • Chang C.C., et al. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J. Biomed. Mater. Res. B: Appl. Biomater. 2011, 98:160-170.
    • (2011) J. Biomed. Mater. Res. B: Appl. Biomater. , vol.98 , pp. 160-170
    • Chang, C.C.1
  • 38
    • 33847093738 scopus 로고    scopus 로고
    • Biopolymer deposition for freeform fabrication of hydrogel tissue constructs
    • Khalil S., Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater. Sci. Eng. C 2007, 27:469-478.
    • (2007) Mater. Sci. Eng. C , vol.27 , pp. 469-478
    • Khalil, S.1    Sun, W.2
  • 39
    • 38349103640 scopus 로고    scopus 로고
    • Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing
    • Chang R., et al. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 2008, 14:41-48.
    • (2008) Tissue Eng. Part A , vol.14 , pp. 41-48
    • Chang, R.1
  • 40
    • 0033213859 scopus 로고    scopus 로고
    • Laser-guided direct writing for applications in biotechnology
    • Odde D.J., Renn M.J. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 1999, 17:385-389.
    • (1999) Trends Biotechnol. , vol.17 , pp. 385-389
    • Odde, D.J.1    Renn, M.J.2
  • 41
    • 27744553784 scopus 로고    scopus 로고
    • Laser-guided direct writing for three-dimensional tissue engineering
    • Nahmias Y., et al. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng. 2005, 92:129-136.
    • (2005) Biotechnol. Bioeng. , vol.92 , pp. 129-136
    • Nahmias, Y.1
  • 42
    • 77955275038 scopus 로고    scopus 로고
    • Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
    • Guillotin B., et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010, 31:7250-7256.
    • (2010) Biomaterials , vol.31 , pp. 7250-7256
    • Guillotin, B.1
  • 43
    • 80053604735 scopus 로고    scopus 로고
    • Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
    • Gaebel R., et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 2011, 32:9218-9230.
    • (2011) Biomaterials , vol.32 , pp. 9218-9230
    • Gaebel, R.1
  • 44
    • 1542741004 scopus 로고    scopus 로고
    • Application of laser printing to mammalian cells
    • Barron J.A., et al. Application of laser printing to mammalian cells. Thin Solid Films 2004, 453:383-387.
    • (2004) Thin Solid Films , vol.453 , pp. 383-387
    • Barron, J.A.1
  • 45
    • 33745786636 scopus 로고    scopus 로고
    • Direct freeform fabrication of seeded hydrogels in arbitrary geometries
    • Cohen D.L., et al. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006, 12:1325-1335.
    • (2006) Tissue Eng. , vol.12 , pp. 1325-1335
    • Cohen, D.L.1
  • 46
    • 33747109090 scopus 로고    scopus 로고
    • Three-dimensional tissue constructs built by bioprinting
    • Jakab K., et al. Three-dimensional tissue constructs built by bioprinting. Biorheology 2006, 43:509-513.
    • (2006) Biorheology , vol.43 , pp. 509-513
    • Jakab, K.1
  • 47
    • 84883122624 scopus 로고    scopus 로고
    • Biofabrication of multi-material anatomically shaped tissue constructs
    • Visser J., et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 2013, 5:035007.
    • (2013) Biofabrication , vol.5 , pp. 035007
    • Visser, J.1
  • 48
    • 34548093866 scopus 로고    scopus 로고
    • Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures
    • Nahmias Y., Odde D.J. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc. 2006, 1:2288-2296.
    • (2006) Nat. Protoc. , vol.1 , pp. 2288-2296
    • Nahmias, Y.1    Odde, D.J.2
  • 49
    • 33646752318 scopus 로고    scopus 로고
    • Laser-induced forward transfer of liquids: study of the droplet ejection process
    • Colina M., et al. Laser-induced forward transfer of liquids: study of the droplet ejection process. J. Appl. Phys. 2006, 99:7.
    • (2006) J. Appl. Phys. , vol.99 , pp. 7
    • Colina, M.1
  • 50
    • 62549153600 scopus 로고    scopus 로고
    • Laser direct write printing of sensitive and robust light emitting organic molecules
    • Kattamis N.T., et al. Laser direct write printing of sensitive and robust light emitting organic molecules. Appl. Phys. Lett. 2009, 94:3.
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 3
    • Kattamis, N.T.1
  • 51
    • 33748922161 scopus 로고    scopus 로고
    • A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds
    • Lu Y., et al. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 2006, 77:396-405.
    • (2006) J. Biomed. Mater. Res. A , vol.77 , pp. 396-405
    • Lu, Y.1
  • 52
    • 84864311480 scopus 로고    scopus 로고
    • Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness
    • Soman P., et al. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials 2012, 33:7064-7070.
    • (2012) Biomaterials , vol.33 , pp. 7064-7070
    • Soman, P.1
  • 53
    • 84924411549 scopus 로고    scopus 로고
    • Bioprinting technology: a current state-of-the-art review
    • Dababneh A.B., Ozbolat I.T. Bioprinting technology: a current state-of-the-art review. J. Manuf. Sci. Eng. 2014, 136:061016.
    • (2014) J. Manuf. Sci. Eng. , vol.136 , pp. 061016
    • Dababneh, A.B.1    Ozbolat, I.T.2
  • 54
    • 79551649124 scopus 로고    scopus 로고
    • A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform
    • Xu F., et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 2011, 6:204-212.
    • (2011) Biotechnol. J. , vol.6 , pp. 204-212
    • Xu, F.1
  • 55
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32:773-785.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 56
    • 77952011208 scopus 로고    scopus 로고
    • Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions
    • Chung S., et al. Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Ann. Biomed. Eng. 2010, 38:1164-1177.
    • (2010) Ann. Biomed. Eng. , vol.38 , pp. 1164-1177
    • Chung, S.1
  • 57
    • 84866885625 scopus 로고    scopus 로고
    • ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium
    • Nguyen-Ngoc K.V., et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2595-E2604.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2595-E2604
    • Nguyen-Ngoc, K.V.1
  • 58
    • 84940454628 scopus 로고    scopus 로고
    • Development of 3D bioprinted human breast cancer for in vitro drug screening
    • King S.M., et al. Development of 3D bioprinted human breast cancer for in vitro drug screening. Cancer Res. 2014, 74:2034.
    • (2014) Cancer Res. , vol.74 , pp. 2034
    • King, S.M.1
  • 59
    • 84900988712 scopus 로고    scopus 로고
    • 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
    • Kolesky D.B., et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 2014, 26:3124-3130.
    • (2014) Adv. Mater. , vol.26 , pp. 3124-3130
    • Kolesky, D.B.1
  • 60
    • 84872020554 scopus 로고    scopus 로고
    • High-throughput printing via microvascular multinozzle arrays
    • Hansen C.J., et al. High-throughput printing via microvascular multinozzle arrays. Adv. Mater. 2013, 25:96-102.
    • (2013) Adv. Mater. , vol.25 , pp. 96-102
    • Hansen, C.J.1
  • 61
    • 84923165754 scopus 로고    scopus 로고
    • Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear
    • Chen Y., et al. Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear. Lab Chip 2015, 15:1255-1261.
    • (2015) Lab Chip , vol.15 , pp. 1255-1261
    • Chen, Y.1
  • 62
    • 17644415370 scopus 로고    scopus 로고
    • Monodisperse double emulsions generated from a microcapillary device
    • Utada A.S., et al. Monodisperse double emulsions generated from a microcapillary device. Science 2005, 308:537-541.
    • (2005) Science , vol.308 , pp. 537-541
    • Utada, A.S.1
  • 63
    • 35549000661 scopus 로고    scopus 로고
    • Cell encapsulating droplet vitrification
    • Demirci U., Montesano G. Cell encapsulating droplet vitrification. Lab Chip 2007, 7:1428-1433.
    • (2007) Lab Chip , vol.7 , pp. 1428-1433
    • Demirci, U.1    Montesano, G.2
  • 64
    • 0004278557 scopus 로고
    • Marcel Dekker, J.C. Berg (Ed.)
    • Wettability 1993, Marcel Dekker. J.C. Berg (Ed.).
    • (1993) Wettability
  • 65
    • 75949088283 scopus 로고    scopus 로고
    • A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls
    • Muradoglu M., Tasoglu S. A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput. Fluids 2010, 39:615-625.
    • (2010) Comput. Fluids , vol.39 , pp. 615-625
    • Muradoglu, M.1    Tasoglu, S.2
  • 66
    • 77956639728 scopus 로고    scopus 로고
    • Impact of a compound droplet on a flat surface: a model for single cell epitaxy
    • Tasoglu S., et al. Impact of a compound droplet on a flat surface: a model for single cell epitaxy. Phys. Fluids 2010, 22:082103.
    • (2010) Phys. Fluids , vol.22 , pp. 082103
    • Tasoglu, S.1
  • 67
    • 84875856478 scopus 로고    scopus 로고
    • Transient swelling, spreading and drug delivery by a dissolved anti-HIV microbicide-bearing film
    • Tasoglu S., et al. Transient swelling, spreading and drug delivery by a dissolved anti-HIV microbicide-bearing film. Phys. Fluids 2013, 25:031901.
    • (2013) Phys. Fluids , vol.25 , pp. 031901
    • Tasoglu, S.1
  • 68
    • 80053417138 scopus 로고    scopus 로고
    • The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle
    • Tasoglu S., et al. The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle. Phys. Fluids 2011, 23:093101.
    • (2011) Phys. Fluids , vol.23 , pp. 093101
    • Tasoglu, S.1
  • 69
    • 43149105173 scopus 로고    scopus 로고
    • The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble
    • Tasoglu S., et al. The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble. Phys. Fluids 2008, 20:040805.
    • (2008) Phys. Fluids , vol.20 , pp. 040805
    • Tasoglu, S.1
  • 70
    • 80052031638 scopus 로고    scopus 로고
    • The consequences of yield stress on deployment of a non-Newtonian anti-HIV microbicide gel
    • Tasoglu S., et al. The consequences of yield stress on deployment of a non-Newtonian anti-HIV microbicide gel. J. Nonnewton. Fluid Mech. 2011, 166:1116-1122.
    • (2011) J. Nonnewton. Fluid Mech. , vol.166 , pp. 1116-1122
    • Tasoglu, S.1
  • 71
    • 84868324086 scopus 로고    scopus 로고
    • Transient spreading and swelling behavior of a gel deploying an anti-HIV microbicide
    • Tasoglu S., et al. Transient spreading and swelling behavior of a gel deploying an anti-HIV microbicide. J. Nonnewton. Fluid Mech. 2012, 187:36-42.
    • (2012) J. Nonnewton. Fluid Mech. , vol.187 , pp. 36-42
    • Tasoglu, S.1
  • 72
    • 37349027919 scopus 로고    scopus 로고
    • Biomolecular gradients in cell culture systems
    • Keenan T.M., Folch A. Biomolecular gradients in cell culture systems. Lab Chip 2008, 8:34-57.
    • (2008) Lab Chip , vol.8 , pp. 34-57
    • Keenan, T.M.1    Folch, A.2
  • 73
    • 19044378183 scopus 로고    scopus 로고
    • Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering
    • Weiss L.E., et al. Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering. Comput. Aided Des. 2005, 37:1127-1139.
    • (2005) Comput. Aided Des. , vol.37 , pp. 1127-1139
    • Weiss, L.E.1
  • 74
    • 84894488673 scopus 로고    scopus 로고
    • 3D printing of biomimetic microstructures for cancer cell migration
    • Huang T.Q., et al. 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices 2014, 16:127-132.
    • (2014) Biomed. Microdevices , vol.16 , pp. 127-132
    • Huang, T.Q.1
  • 75
    • 0032516078 scopus 로고    scopus 로고
    • Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment
    • Hobbs S.K., et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:4607-4612.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 4607-4612
    • Hobbs, S.K.1
  • 76
    • 0028304405 scopus 로고
    • Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft
    • Yuan F., et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994, 54:3352-3356.
    • (1994) Cancer Res. , vol.54 , pp. 3352-3356
    • Yuan, F.1
  • 77
    • 79952169978 scopus 로고    scopus 로고
    • Scaling rules for diffusive drug delivery in tumor and normal tissues
    • Baish J.W., et al. Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1799-1803.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1799-1803
    • Baish, J.W.1
  • 78
    • 62549151252 scopus 로고    scopus 로고
    • Why are tumour blood vessels abnormal and why is it important to know?
    • Nagy J.A., et al. Why are tumour blood vessels abnormal and why is it important to know?. Br. J. Cancer 2009, 100:865-869.
    • (2009) Br. J. Cancer , vol.100 , pp. 865-869
    • Nagy, J.A.1
  • 79
    • 84863655863 scopus 로고    scopus 로고
    • Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
    • Chauhan V.P., et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 2012, 7:383-388.
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 383-388
    • Chauhan, V.P.1
  • 80
    • 79960982395 scopus 로고    scopus 로고
    • Fabrication of poly(D,L-lactide-co-glycolide) microspheres and degradation characteristics in vitro
    • He Z.Q., Xiong L.Z. Fabrication of poly(D,L-lactide-co-glycolide) microspheres and degradation characteristics in vitro. J. Macromol. Sci. Part B: Phy. 2011, 50:1682-1690.
    • (2011) J. Macromol. Sci. Part B: Phy. , vol.50 , pp. 1682-1690
    • He, Z.Q.1    Xiong, L.Z.2
  • 81
    • 84930642998 scopus 로고    scopus 로고
    • Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture
    • Hribar K.C., et al. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab Chip 2015, 15:2412-2418.
    • (2015) Lab Chip , vol.15 , pp. 2412-2418
    • Hribar, K.C.1
  • 82
    • 82055196892 scopus 로고    scopus 로고
    • Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip
    • Snyder J.E., et al. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 2011, 3:034112.
    • (2011) Biofabrication , vol.3 , pp. 034112
    • Snyder, J.E.1
  • 83
    • 84919488684 scopus 로고    scopus 로고
    • Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development
    • Unger C., et al. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv. Drug Deliv. Rev. 2014, 79-80:50-67.
    • (2014) Adv. Drug Deliv. Rev. , pp. 50-67
    • Unger, C.1
  • 84
    • 84904649019 scopus 로고    scopus 로고
    • An inducible hepatocellular carcinoma model for preclinical evaluation of antiangiogenic therapy in adult mice
    • Runge A., et al. An inducible hepatocellular carcinoma model for preclinical evaluation of antiangiogenic therapy in adult mice. Cancer Res. 2014, 74:4157-4169.
    • (2014) Cancer Res. , vol.74 , pp. 4157-4169
    • Runge, A.1
  • 85
    • 34547700118 scopus 로고    scopus 로고
    • The ethics of animal research. Talking point on the use of animals in scientific research
    • Festing S., Wilkinson R. The ethics of animal research. Talking point on the use of animals in scientific research. EMBO Rep. 2007, 8:526-530.
    • (2007) EMBO Rep. , vol.8 , pp. 526-530
    • Festing, S.1    Wilkinson, R.2
  • 86
    • 56749184607 scopus 로고    scopus 로고
    • Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering
    • Singh M., et al. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng. Part C Methods 2008, 14:299-309.
    • (2008) Tissue Eng. Part C Methods , vol.14 , pp. 299-309
    • Singh, M.1
  • 87
    • 83455263361 scopus 로고    scopus 로고
    • Advanced cell therapies with and without scaffolds
    • Demirbag B., et al. Advanced cell therapies with and without scaffolds. Biotechnol. J. 2011, 6:1437-1453.
    • (2011) Biotechnol. J. , vol.6 , pp. 1437-1453
    • Demirbag, B.1
  • 88
    • 77955276061 scopus 로고    scopus 로고
    • High-throughput laser printing of cells and biomaterials for tissue engineering
    • Guillemot F., et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 2010, 6:2494-2500.
    • (2010) Acta Biomater , vol.6 , pp. 2494-2500
    • Guillemot, F.1
  • 89
    • 84884903697 scopus 로고    scopus 로고
    • 25th anniversary article: Engineering hydrogels for biofabrication
    • Malda J., et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 2013, 25:5011-5028.
    • (2013) Adv Mater , vol.25 , pp. 5011-5028
    • Malda, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.