-
1
-
-
84875684003
-
Islet β cell mass in diabetes and how it relates to function, birth, and death
-
Weir GC, Bonner-Weir S. Islet β cell mass in diabetes and how it relates to function, birth, and death. Ann NY Acad Sci. 2013;1281: 92-105.
-
(2013)
Ann NY Acad Sci
, vol.1281
, pp. 92-105
-
-
Weir, G.C.1
Bonner-Weir, S.2
-
3
-
-
2342510386
-
Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation
-
Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41-46.
-
(2004)
Nature
, vol.429
, pp. 41-46
-
-
Dor, Y.1
Brown, J.2
Martinez, O.I.3
Melton, D.A.4
-
4
-
-
34247644369
-
Growth and regeneration of adult β cells does not involve specialized progenitors
-
Teta M, RankinMM,Long SY, Stein GM, Kushner JA. Growth and regeneration of adult β cells does not involve specialized progenitors. Dev Cell. 2007;12:817-826.
-
(2007)
Dev Cell
, vol.12
, pp. 817-826
-
-
Teta, M.1
Rankin, M.M.2
Long, S.Y.3
Stein, G.M.4
Kushner, J.A.5
-
5
-
-
84875452820
-
No evidence for β cell neogenesis in murine adult pancreas
-
Xiao X, Chen Z, Shiota C, et al. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest. 2013;123:2207-2217.
-
(2013)
J Clin Invest
, vol.123
, pp. 2207-2217
-
-
Xiao, X.1
Chen, Z.2
Shiota, C.3
-
6
-
-
80055115839
-
Type 2 diabetes and the aging pancreatic β cell
-
Gunasekaran U, Gannon M. Type 2 diabetes and the aging pancreatic β cell. Aging. 2011;3:565-575.
-
(2011)
Aging
, vol.3
, pp. 565-575
-
-
Gunasekaran, U.1
Gannon, M.2
-
7
-
-
66649128739
-
Adaptive β-cell proliferation is severely restricted with advanced age
-
Rankin MM, Kushner JA. Adaptive β-cell proliferation is severely restricted with advanced age. Diabetes. 2009;58:1365-1372.
-
(2009)
Diabetes
, vol.58
, pp. 1365-1372
-
-
Rankin, M.M.1
Kushner, J.A.2
-
8
-
-
84865029204
-
Pancreatic β cells in very old mice retain capacity for compensatory proliferation
-
Stolovich-Rain M, Hija A, Grimsby J, Glaser B, Dor Y. Pancreatic β cells in very old mice retain capacity for compensatory proliferation. J Biol Chem. 2012;287:27407-27414.
-
(2012)
J Biol Chem
, vol.287
, pp. 27407-27414
-
-
Stolovich-Rain, M.1
Hija, A.2
Grimsby, J.3
Glaser, B.4
Dor, Y.5
-
9
-
-
84883320045
-
Systemic regulation of the age-related decline of pancreatic β-cell replication
-
Salpeter SJ, Khalaileh A, Weinberg-Corem N, Ziv O, Glaser B, Dor Y. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes. 2013;62:2843-2848.
-
(2013)
Diabetes
, vol.62
, pp. 2843-2848
-
-
Salpeter, S.J.1
Khalaileh, A.2
Weinberg-Corem, N.3
Ziv, O.4
Glaser, B.5
Dor, Y.6
-
10
-
-
84964698655
-
Reduced Ki67 staining in the postmortem state calls into question past conclusions about the lack of turnover of adult human β-cells
-
Sullivan BA, Hollister-Lock J, Bonner-Weir S, Weir GC. Reduced Ki67 staining in the postmortem state calls into question past conclusions about the lack of turnover of adult human β-cells. Diabetes. 2015;64:1698-1702.
-
(2015)
Diabetes
, vol.64
, pp. 1698-1702
-
-
Sullivan, B.A.1
Hollister-Lock, J.2
Bonner-Weir, S.3
Weir, G.C.4
-
11
-
-
84964697600
-
Human β-cell proliferation and intracellular signaling: Part 3
-
Stewart AF, Hussain MA, García-Ocaña A, et al. Human β-cell proliferation and intracellular signaling: part 3. Diabetes. 2015;64: 1872-1885.
-
(2015)
Diabetes
, vol.64
, pp. 1872-1885
-
-
Stewart, A.F.1
Hussain, M.A.2
García-Ocaña, A.3
-
12
-
-
84877928075
-
Smad signaling pathways regulate pancreatic endocrine development
-
El-Gohary Y, Tulachan S, Guo P, et al. Smad signaling pathways regulate pancreatic endocrine development. Dev Biol. 2013;378: 83-93.
-
(2013)
Dev Biol
, vol.378
, pp. 83-93
-
-
El-Gohary, Y.1
Tulachan, S.2
Guo, P.3
-
13
-
-
33244464960
-
Conditional expression of Smad7 in pancreatic β cells disrupts TGF-β signaling and induces reversible diabetes mellitus
-
Smart NG, Apelqvist AA, Gu X, et al. Conditional expression of Smad7 in pancreatic β cells disrupts TGF-β signaling and induces reversible diabetes mellitus. PLoS Biol. 2006;4:e39.
-
(2006)
PLoS Biol
, vol.4
, pp. e39
-
-
Smart, N.G.1
Apelqvist, A.A.2
Gu, X.3
-
14
-
-
84875479006
-
TGFβ receptor signaling is essential for inflammation-induced but not β-cell workload-induced β-cell proliferation
-
Xiao X, Wiersch J, El-Gohary Y, et al. TGFβ receptor signaling is essential for inflammation-induced but not β-cell workload-induced β-cell proliferation. Diabetes. 2013;62:1217-1226.
-
(2013)
Diabetes
, vol.62
, pp. 1217-1226
-
-
Xiao, X.1
Wiersch, J.2
El-Gohary, Y.3
-
15
-
-
84886545834
-
Asmad signaling network regulates islet cell proliferation
-
El-Gohary Y, Tulachan S, Wiersch J, et al.Asmad signaling network regulates islet cell proliferation. Diabetes. 2014;63:224-236.
-
(2014)
Diabetes
, vol.63
, pp. 224-236
-
-
El-Gohary, Y.1
Tulachan, S.2
Wiersch, J.3
-
16
-
-
84897568455
-
M2 macrophages promote β-cell proliferation by up-regulation of SMAD7
-
Xiao X, Gaffar I, Guo P, et al. M2 macrophages promote β-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci USA. 2014;111:E1211-E1220.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. E1211-E1220
-
-
Xiao, X.1
Gaffar, I.2
Guo, P.3
-
17
-
-
85003341559
-
Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway
-
Blum B, Roose AN, Barrandon O, et al. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. eLife. 2014;3:e02809.
-
(2014)
ELife
, vol.3
, pp. e02809
-
-
Blum, B.1
Roose, A.N.2
Barrandon, O.3
-
18
-
-
80455135050
-
Differential synthesis and action of TGFss superfamily ligands in mouse and rat islets
-
Brown ML, Kimura F, Bonomi LM, Ungerleider NA, Schneyer AL. Differential synthesis and action of TGFss superfamily ligands in mouse and rat islets. Islets. 2011;3:367-375.
-
(2011)
Islets
, vol.3
, pp. 367-375
-
-
Brown, M.L.1
Kimura, F.2
Bonomi, L.M.3
Ungerleider, N.A.4
Schneyer, A.L.5
-
19
-
-
0037186459
-
Identification of novel inhibitors of the transforming growth factor β1 (TGF-β1) type 1 receptor (ALK5)
-
Callahan JF, Burgess JL, Fornwald JA, et al. Identification of novel inhibitors of the transforming growth factor β1 (TGF-β1) type 1 receptor (ALK5). J Med Chem. 2002;45:999-1001.
-
(2002)
J Med Chem
, vol.45
, pp. 999-1001
-
-
Callahan, J.F.1
Burgess, J.L.2
Fornwald, J.A.3
-
20
-
-
84898597757
-
Pancreatic duct cells as a source of VEGF in mice
-
Xiao X, Prasadan K, Guo P, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991-1000.
-
(2014)
Diabetologia
, vol.57
, pp. 991-1000
-
-
Xiao, X.1
Prasadan, K.2
Guo, P.3
-
21
-
-
66449119468
-
Transforming growth factor- β/ Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function
-
Lin HM, Lee JH, Yadav H, et al. Transforming growth factor- β/ Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function. J Biol Chem. 2009;284:12246-12257.
-
(2009)
J Biol Chem
, vol.284
, pp. 12246-12257
-
-
Lin, H.M.1
Lee, J.H.2
Yadav, H.3
-
22
-
-
33845540482
-
Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function
-
Brissova M, Shostak A, Shiota M, et al. Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function. Diabetes. 2006;55: 2974-2985.
-
(2006)
Diabetes
, vol.55
, pp. 2974-2985
-
-
Brissova, M.1
Shostak, A.2
Shiota, M.3
-
23
-
-
84878798182
-
Human blood outgrowth endothelial cells improve islet survival and function when co-transplanted in a mouse model of diabetes
-
Coppens V, Heremans Y, Leuckx G, et al. Human blood outgrowth endothelial cells improve islet survival and function when co-transplanted in a mouse model of diabetes. Diabetologia. 2013;56:382-390.
-
(2013)
Diabetologia
, vol.56
, pp. 382-390
-
-
Coppens, V.1
Heremans, Y.2
Leuckx, G.3
-
24
-
-
79954632320
-
Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice
-
Rackham CL, Chagastelles PC, Nardi NB, Hauge-Evans AC, Jones PM, King AJ. Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia. 2011;54:1127-1135.
-
(2011)
Diabetologia
, vol.54
, pp. 1127-1135
-
-
Rackham, C.L.1
Chagastelles, P.C.2
Nardi, N.B.3
Hauge-Evans, A.C.4
Jones, P.M.5
King, A.J.6
-
25
-
-
77955489247
-
In vivo non-viral gene delivery of human vascular endothelial growth factor improves revascularisation and restoration of euglycaemia after human islet transplantation into mouse liver
-
Shimoda M, Chen S, Noguchi H, Matsumoto S, Grayburn PA. In vivo non-viral gene delivery of human vascular endothelial growth factor improves revascularisation and restoration of euglycaemia after human islet transplantation into mouse liver. Diabetologia. 2010;53:1669-1679.
-
(2010)
Diabetologia
, vol.53
, pp. 1669-1679
-
-
Shimoda, M.1
Chen, S.2
Noguchi, H.3
Matsumoto, S.4
Grayburn, P.A.5
|