-
1
-
-
0034975453
-
Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century
-
Caplan AI, Bruder SP. 2001. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends MolMed 7 (6): 259-64.
-
(2001)
Trends MolMed
, vol.7
, Issue.6
, pp. 259-264
-
-
Caplan, A.I.1
Bruder, S.P.2
-
2
-
-
0037019337
-
Pluripotency of mesenchymal stem cells derived from adult marrow
-
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418 (6893): 41-9.
-
(2002)
Nature
, vol.418
, Issue.6893
, pp. 41-49
-
-
Jiang, Y.1
Jahagirdar, B.N.2
Reinhardt, R.L.3
Schwartz, R.E.4
Keene, C.D.5
Ortiz-Gonzalez, X.R.6
-
3
-
-
0027321842
-
Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype
-
Stein GS, Lian JB. 1993. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. EndocrRev 14 (4): 424-42.
-
(1993)
EndocrRev
, vol.14
, Issue.4
, pp. 424-442
-
-
Stein, G.S.1
Lian, J.B.2
-
4
-
-
0030666372
-
Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development
-
Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89 (5): 765-71.
-
(1997)
Cell
, vol.89
, Issue.5
, pp. 765-771
-
-
Otto, F.1
Thornell, A.P.2
Crompton, T.3
Denzel, A.4
Gilmour, K.C.5
Rosewell, I.R.6
-
5
-
-
0033048965
-
Cleidocranial dysplasia: Clinical and molecular genetics
-
Mundlos S. 1999. Cleidocranial dysplasia: Clinical and molecular genetics. J Med Genet 36 (3): 177-82.
-
(1999)
J Med Genet
, vol.36
, Issue.3
, pp. 177-182
-
-
Mundlos, S.1
-
6
-
-
0033548440
-
Cbfa1 isoforms exert functional differences in osteoblast differentiation
-
Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, et al. 1999. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274 (11): 6972-8.
-
(1999)
J Biol Chem
, vol.274
, Issue.11
, pp. 6972-6978
-
-
Harada, H.1
Tagashira, S.2
Fujiwara, M.3
Ogawa, S.4
Katsumata, T.5
Yamaguchi, A.6
-
7
-
-
0035831510
-
Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes
-
Kern B, Shen J, Starbuck M, Karsenty G. 2001. Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J Biol Chem 276 (10): 7101-7.
-
(2001)
J Biol Chem
, vol.276
, Issue.10
, pp. 7101-7107
-
-
Kern, B.1
Shen, J.2
Starbuck, M.3
Karsenty, G.4
-
8
-
-
33646050013
-
Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene
-
Nishio Y, Dong Y, Paris M, O ' Keefe RJ, Schwarz EM, Drissi H. 2006. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372: 62-70.
-
(2006)
Gene
, vol.372
, pp. 62-70
-
-
Nishio, Y.1
Dong, Y.2
Paris, M.3
O'Keefe, R.J.4
Schwarz, E.M.5
Drissi, H.6
-
9
-
-
0037059614
-
The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation
-
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. 2002. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108 (1): 17-29.
-
(2002)
Cell
, vol.108
, Issue.1
, pp. 17-29
-
-
Nakashima, K.1
Zhou, X.2
Kunkel, G.3
Zhang, Z.4
Deng, J.M.5
Behringer, R.R.6
-
10
-
-
23844515714
-
NFAT and Osterix cooperatively regulate bone formation
-
Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, et al. 2005. NFAT and Osterix cooperatively regulate bone formation. Nat Med 11 (8): 880-5.
-
(2005)
Nat Med
, vol.11
, Issue.8
, pp. 880-885
-
-
Koga, T.1
Matsui, Y.2
Asagiri, M.3
Kodama, T.4
de Crombrugghe, B.5
Nakashima, K.6
-
11
-
-
34250019537
-
Bone: Formation by autoinduction
-
Urist MR. 1965. Bone: formation by autoinduction. Science 150 (698): 893-9.
-
(1965)
Science
, vol.150
, Issue.698
, pp. 893-899
-
-
Urist, M.R.1
-
13
-
-
33846004405
-
Bone morphogenetic proteins and their antagonists
-
Gazzerro E, Canalis E. 2006. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7 (1-2): 51-65.
-
(2006)
Rev Endocr Metab Disord
, vol.7
, Issue.1-2
, pp. 51-65
-
-
Gazzerro, E.1
Canalis, E.2
-
14
-
-
33646348736
-
A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva
-
Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. 2006. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38 (5): 525-7.
-
(2006)
Nat Genet
, vol.38
, Issue.5
, pp. 525-527
-
-
Shore, E.M.1
Xu, M.2
Feldman, G.J.3
Fenstermacher, D.A.4
Cho, T.J.5
Choi, I.H.6
-
15
-
-
77953497987
-
ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation
-
van Dinther M, Visser N, de Gorter DJJ, Doorn J, Goumans MJ, de Boer J, et al. 2010. ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation. J Bone Miner Res 25 (6): 1208-15.
-
(2010)
J Bone Miner Res
, vol.25
, Issue.6
, pp. 1208-1215
-
-
van Dinther, M.1
Visser, N.2
de Gorter, D.J.J.3
Doorn, J.4
Goumans, M.J.5
de Boer, J.6
-
16
-
-
34447343823
-
Bone morphogenetic proteins in clinical applications
-
Gautschi OP, Frey SP, Zellweger R. 2007. Bone morphogenetic proteins in clinical applications. ANZ J Surg 77 (8): 626-31.
-
(2007)
ANZ J Surg
, vol.77
, Issue.8
, pp. 626-631
-
-
Gautschi, O.P.1
Frey, S.P.2
Zellweger, R.3
-
17
-
-
23044466047
-
Specificity and versatility in tgf-β signaling through Smads
-
Feng XH, Derynck R. 2005. Specificity and versatility in tgf-β signaling through Smads. Annu Rev Cell Dev Biol 21: 659-93.
-
(2005)
Annu Rev Cell Dev Biol
, vol.21
, pp. 659-693
-
-
Feng, X.H.1
Derynck, R.2
-
18
-
-
27644494876
-
Smad transcription factors
-
Massague J, Seoane J, Wotton D. 2005. Smad transcription factors. Genes Dev 19 (23): 2783-810.
-
(2005)
Genes Dev
, vol.19
, Issue.23
, pp. 2783-2810
-
-
Massague, J.1
Seoane, J.2
Wotton, D.3
-
19
-
-
0034460993
-
Runx2 is a common target of transforming growth factor β 1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12
-
Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, et al. 2000. Runx2 is a common target of transforming growth factor β 1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20 (23): 8783-92.
-
(2000)
Mol Cell Biol
, vol.20
, Issue.23
, pp. 8783-8792
-
-
Lee, K.S.1
Kim, H.J.2
Li, Q.L.3
Chi, X.Z.4
Ueta, C.5
Komori, T.6
-
20
-
-
43749091299
-
Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal
-
Javed A, Bae JS, Afzal F, Gutierrez S, Pratap J, Zaidi SK, et al. 2008. Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J Biol Chem 283 (13): 8412-22.
-
(2008)
J Biol Chem
, vol.283
, Issue.13
, pp. 8412-8422
-
-
Javed, A.1
Bae, J.S.2
Afzal, F.3
Gutierrez, S.4
Pratap, J.5
Zaidi, S.K.6
-
21
-
-
0034641617
-
A RUNX2/PEBP2 α A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia
-
Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, et al. 2000. A RUNX2/PEBP2 α A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A 97 (19): 10549-54.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.19
, pp. 10549-10554
-
-
Zhang, Y.W.1
Yasui, N.2
Ito, K.3
Huang, G.4
Fujii, M.5
Hanai, J.6
-
22
-
-
0033964720
-
Bone morphogenetic protein-4 regulates its own expression in cultured osteoblasts
-
Pereira RC, Rydziel S, Canalis E. 2000. Bone morphogenetic protein-4 regulates its own expression in cultured osteoblasts. J Cell Physiol 182 (2): 239-46.
-
(2000)
J Cell Physiol
, vol.182
, Issue.2
, pp. 239-246
-
-
Pereira, R.C.1
Rydziel, S.2
Canalis, E.3
-
23
-
-
0037085441
-
Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter
-
Korchynskyi O, ten Dijke P. 2002. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277 (7): 4883-91.
-
(2002)
J Biol Chem
, vol.277
, Issue.7
, pp. 4883-4891
-
-
Korchynskyi, O.1
ten Dijke, P.2
-
24
-
-
0027496995
-
Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells
-
Ogata T, Wozney JM, Benezra R, Noda M. 1993. Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells. Proc Natl Acad Sci U S A 90 (19): 9219-22.
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, Issue.19
, pp. 9219-9222
-
-
Ogata, T.1
Wozney, J.M.2
Benezra, R.3
Noda, M.4
-
25
-
-
16544393624
-
Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo
-
Maeda Y, Tsuji K, Nifuji A, Noda M. 2004. Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo. J Cell Biochem 93 (2): 337-44.
-
(2004)
J Cell Biochem
, vol.93
, Issue.2
, pp. 337-344
-
-
Maeda, Y.1
Tsuji, K.2
Nifuji, A.3
Noda, M.4
-
26
-
-
24744462930
-
BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways
-
Celil AB, Campbell PG. 2005. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280 (36): 31353-9.
-
(2005)
J Biol Chem
, vol.280
, Issue.36
, pp. 31353-31359
-
-
Celil, A.B.1
Campbell, P.G.2
-
27
-
-
23844506742
-
Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling
-
Celil AB, Hollinger JO, Campbell PG. 2005. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem 95 (3): 518-28.
-
(2005)
J Cell Biochem
, vol.95
, Issue.3
, pp. 518-528
-
-
Celil, A.B.1
Hollinger, J.O.2
Campbell, P.G.3
-
28
-
-
26444506000
-
Transforming growth factor-β 1 to the bone
-
Janssens K, ten Dijke P, Janssens S, Van Hul W. 2005. Transforming growth factor-β 1 to the bone. Endocr Rev 26 (6): 743-74.
-
(2005)
Endocr Rev
, vol.26
, Issue.6
, pp. 743-774
-
-
Janssens, K.1
ten Dijke, P.2
Janssens, S.3
Van Hul, W.4
-
29
-
-
0035341209
-
TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation
-
Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. 2001. TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 20 (9): 2254-72.
-
(2001)
EMBO J
, vol.20
, Issue.9
, pp. 2254-2272
-
-
Alliston, T.1
Choy, L.2
Ducy, P.3
Karsenty, G.4
Derynck, R.5
-
30
-
-
1442313955
-
Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells
-
Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. 2004. Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23 (3): 552-63.
-
(2004)
EMBO J
, vol.23
, Issue.3
, pp. 552-563
-
-
Maeda, S.1
Hayashi, M.2
Komiya, S.3
Imamura, T.4
Miyazono, K.5
-
31
-
-
0035991249
-
Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells
-
Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K. 2002. Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells. J Bone Miner Res 17 (7): 1190-9.
-
(2002)
J Bone Miner Res
, vol.17
, Issue.7
, pp. 1190-1199
-
-
Sowa, H.1
Kaji, H.2
Yamaguchi, T.3
Sugimoto, T.4
Chihara, K.5
-
32
-
-
0039844411
-
Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline C α promoter
-
Hanai J, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo WH, et al. 1999. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline C α promoter. J Biol Chem 274 (44): 31577-82.
-
(1999)
J Biol Chem
, vol.274
, Issue.44
, pp. 31577-31582
-
-
Hanai, J.1
Chen, L.F.2
Kanno, T.3
Ohtani-Fujita, N.4
Kim, W.Y.5
Guo, W.H.6
-
33
-
-
33746808398
-
Wnt/ β-catenin signaling in development and disease
-
Clevers H. 2006. Wnt/ β-catenin signaling in development and disease. Cell 127 (3): 469-80.
-
(2006)
Cell
, vol.127
, Issue.3
, pp. 469-480
-
-
Clevers, H.1
-
34
-
-
17844372752
-
Wnt/ β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
-
Day TF, Guo X, Garrett-Beal L, Yang Y. 2005. Wnt/ β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8 (5): 739-50.
-
(2005)
Dev Cell
, vol.8
, Issue.5
, pp. 739-750
-
-
Day, T.F.1
Guo, X.2
Garrett-Beal, L.3
Yang, Y.4
-
35
-
-
17844363974
-
Canonical Wnt/ β-catenin signaling prevents osteoblasts from differentiating into chondrocytes
-
Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. 2005. Canonical Wnt/ β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8 (5): 727-38.
-
(2005)
Dev Cell
, vol.8
, Issue.5
, pp. 727-738
-
-
Hill, T.P.1
Spater, D.2
Taketo, M.M.3
Birchmeier, W.4
Hartmann, C.5
-
36
-
-
13444302715
-
Sequential roles of Hedgehog and Wnt signaling in osteoblast development
-
Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. 2005. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132 (1): 49-60.
-
(2005)
Development
, vol.132
, Issue.1
, pp. 49-60
-
-
Hu, H.1
Hilton, M.J.2
Tu, X.3
Yu, K.4
Ornitz, D.M.5
Long, F.6
-
37
-
-
77953407742
-
Osteocyte Wnt/ β-catenin signaling is required for normal bone homeostasis
-
Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, et al. 2010. Osteocyte Wnt/ β-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30 (12): 3071-85.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.12
, pp. 3071-3085
-
-
Kramer, I.1
Halleux, C.2
Keller, H.3
Pegurri, M.4
Gooi, J.H.5
Weber, P.B.6
-
38
-
-
0037118285
-
High bone density due to a mutation in LDL-receptor-related protein 5
-
Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. 2002. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346 (20): 1513-21.
-
(2002)
N Engl J Med
, vol.346
, Issue.20
, pp. 1513-1521
-
-
Boyden, L.M.1
Mao, J.2
Belsky, J.3
Mitzner, L.4
Farhi, A.5
Mitnick, M.A.6
-
39
-
-
0036138175
-
A mutation in the LDL receptorrelated protein 5 gene results in the autosomal dominant high-bone-mass trait
-
Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. 2002. A mutation in the LDL receptorrelated protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70 (1): 11-9.
-
(2002)
Am J Hum Genet
, vol.70
, Issue.1
, pp. 11-19
-
-
Little, R.D.1
Carulli, J.P.2
Del Mastro, R.G.3
Dupuis, J.4
Osborne, M.5
Folz, C.6
-
40
-
-
0037373341
-
Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density
-
Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, et al. 2003. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72 (3): 763-71.
-
(2003)
Am J Hum Genet
, vol.72
, Issue.3
, pp. 763-771
-
-
Van Wesenbeeck, L.1
Cleiren, E.2
Gram, J.3
Beals, R.K.4
Benichou, O.5
Scopelliti, D.6
-
41
-
-
40149102166
-
Osteocyte-derived sclerostin inhibits bone formation: Its role in bone morphogenetic protein and Wnt signaling
-
ten Dijke P, Krause C, de Gorter DJJ, Lowik CW, van Bezooijen RL. 2008. Osteocyte-derived sclerostin inhibits bone formation: Its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am 90 (Suppl 1): 31-5.
-
(2008)
J Bone Joint Surg Am
, vol.90
, pp. 31-35
-
-
ten Dijke, P.1
Krause, C.2
de Gorter, D.J.J.3
Lowik, C.W.4
van Bezooijen, R.L.5
-
42
-
-
0033567213
-
Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation
-
St Jacques B, Hammerschmidt M, McMahon AP. 1999. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13 (16): 2072-86.
-
(1999)
Genes Dev
, vol.13
, Issue.16
, pp. 2072-2086
-
-
St Jacques, B.1
Hammerschmidt, M.2
McMahon, A.P.3
-
43
-
-
1842611651
-
Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton
-
Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP. 2004. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131 (6): 1309-18.
-
(2004)
Development
, vol.131
, Issue.6
, pp. 1309-1318
-
-
Long, F.1
Chung, U.I.2
Ohba, S.3
McMahon, J.4
Kronenberg, H.M.5
McMahon, A.P.6
-
45
-
-
0027478216
-
A mouse model of greig cephalopolysyndactyly syndrome: The extra-toesJ mutation contains an intragenic deletion of the Gli3 gene
-
Hui CC, Joyner AL. 1993. A mouse model of greig cephalopolysyndactyly syndrome: The extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3 (3): 241-6.
-
(1993)
Nat Genet
, vol.3
, Issue.3
, pp. 241-246
-
-
Hui, C.C.1
Joyner, A.L.2
-
46
-
-
0037194765
-
Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity
-
Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C. 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418 (6901): 979-83.
-
(2002)
Nature
, vol.418
, Issue.6901
, pp. 979-983
-
-
Litingtung, Y.1
Dahn, R.D.2
Li, Y.3
Fallon, J.F.4
Chiang, C.5
-
47
-
-
34347400475
-
Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function
-
Shimoyama A, Wada M, Ikeda F, Hata K, Matsubara T, Nifuji A, et al. 2007. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol Biol Cell 18 (7): 2411-8.
-
(2007)
Mol Biol Cell
, vol.18
, Issue.7
, pp. 2411-2418
-
-
Shimoyama, A.1
Wada, M.2
Ikeda, F.3
Hata, K.4
Matsubara, T.5
Nifuji, A.6
-
49
-
-
0028057743
-
Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene
-
Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, et al. 1994. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8 (3): 277-89.
-
(1994)
Genes Dev
, vol.8
, Issue.3
, pp. 277-289
-
-
Karaplis, A.C.1
Luz, A.2
Glowacki, J.3
Bronson, R.T.4
Tybulewicz, V.L.5
Kronenberg, H.M.6
-
50
-
-
0036251217
-
Parathyroid hormone is essential for normal fetal bone formation
-
Miao D, He B, Karaplis AC, Goltzman D. 2002. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 109 (9): 1173-82.
-
(2002)
J Clin Invest
, vol.109
, Issue.9
, pp. 1173-1182
-
-
Miao, D.1
He, B.2
Karaplis, A.C.3
Goltzman, D.4
-
51
-
-
0029811142
-
Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation
-
Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. 1996. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A 93 (19): 10240-5.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, Issue.19
, pp. 10240-10245
-
-
Weir, E.C.1
Philbrick, W.M.2
Amling, M.3
Neff, L.A.4
Baron, R.5
Broadus, A.E.6
-
52
-
-
9344241375
-
PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth
-
Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. 1996. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273 (5275): 663-6.
-
(1996)
Science
, vol.273
, Issue.5275
, pp. 663-666
-
-
Lanske, B.1
Karaplis, A.C.2
Lee, K.3
Luz, A.4
Vortkamp, A.5
Pirro, A.6
-
53
-
-
0031769483
-
A homozygous inactivating mutation in the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia
-
Zhang P, Jobert AS, Couvineau A, Silve C. 1998. A homozygous inactivating mutation in the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J Clin Endocrinol Metab 83 (9): 3365-8.
-
(1998)
J Clin Endocrinol Metab
, vol.83
, Issue.9
, pp. 3365-3368
-
-
Zhang, P.1
Jobert, A.S.2
Couvineau, A.3
Silve, C.4
-
54
-
-
0037340051
-
Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling
-
Krishnan V, Moore TL, Ma YL, Helvering LM, Frolik CA, Valasek KM, et al. 2003. Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol Endocrinol 17 (3): 423-35.
-
(2003)
Mol Endocrinol
, vol.17
, Issue.3
, pp. 423-435
-
-
Krishnan, V.1
Moore, T.L.2
Ma, Y.L.3
Helvering, L.M.4
Frolik, C.A.5
Valasek, K.M.6
-
55
-
-
28144465050
-
Multiple mechanisms are involved in inhibition of osteoblast differentiation by PTHrP and PTH in KS483 Cells
-
van der Horst G, Farih-Sips H, Lowik CW, Karperien M. 2005. Multiple mechanisms are involved in inhibition of osteoblast differentiation by PTHrP and PTH in KS483 Cells. J Bone Miner Res 20 (12): 2233-44.
-
(2005)
J Bone Miner Res
, vol.20
, Issue.12
, pp. 2233-2244
-
-
van der Horst, G.1
Farih-Sips, H.2
Lowik, C.W.3
Karperien, M.4
-
56
-
-
70350441264
-
Growth factor control of bone mass
-
Canalis E. 2009. Growth factor control of bone mass. J Cell Biochem 108 (4): 769-77.
-
(2009)
J Cell Biochem
, vol.108
, Issue.4
, pp. 769-777
-
-
Canalis, E.1
-
57
-
-
0035196410
-
The skeletal structure of insulin-like growth factor I-deficient mice
-
Bikle D, Majumdar S, Laib A, Powell-Braxton L, Rosen C, Beamer W, et al. 2001. The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res 16 (12): 2320-9.
-
(2001)
J Bone Miner Res
, vol.16
, Issue.12
, pp. 2320-2329
-
-
Bikle, D.1
Majumdar, S.2
Laib, A.3
Powell-Braxton, L.4
Rosen, C.5
Beamer, W.6
-
58
-
-
0038624395
-
Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2
-
Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, et al. 2003. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17 (11): 1352-65.
-
(2003)
Genes Dev
, vol.17
, Issue.11
, pp. 1352-1365
-
-
Peng, X.D.1
Xu, P.Z.2
Chen, M.L.3
Hahn-Windgassen, A.4
Skeen, J.5
Jacobs, J.6
-
59
-
-
3142707223
-
Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling
-
Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, et al. 2004. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166 (1): 85-95.
-
(2004)
J Cell Biol
, vol.166
, Issue.1
, pp. 85-95
-
-
Fujita, T.1
Azuma, Y.2
Fukuyama, R.3
Hattori, Y.4
Yoshida, C.5
Koida, M.6
-
60
-
-
79956311528
-
Foxo1 mediates insulin-like growth factor 1 (IGF1)/ insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts
-
Yang S, Xu H, Yu S, Cao H, Fan J, Ge C, et al. 2011. Foxo1 mediates insulin-like growth factor 1 (IGF1)/ insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts. J Biol Chem 286 (21): 19149-58.
-
(2011)
J Biol Chem
, vol.286
, Issue.21
, pp. 19149-19158
-
-
Yang, S.1
Xu, H.2
Yu, S.3
Cao, H.4
Fan, J.5
Ge, C.6
-
61
-
-
61849095684
-
JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation
-
Matsuguchi T, Chiba N, Bandow K, Kakimoto K, Masuda A, Ohnishi T. 2009. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J Bone Miner Res 24 (3): 398-410.
-
(2009)
J Bone Miner Res
, vol.24
, Issue.3
, pp. 398-410
-
-
Matsuguchi, T.1
Chiba, N.2
Bandow, K.3
Kakimoto, K.4
Masuda, A.5
Ohnishi, T.6
-
62
-
-
18144391965
-
FGF signaling in the developing endochondral skeleton
-
Ornitz DM. 2005. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16 (2): 205-13.
-
(2005)
Cytokine Growth Factor Rev
, vol.16
, Issue.2
, pp. 205-213
-
-
Ornitz, D.M.1
-
63
-
-
0036671733
-
The IIIc alternative of Fgfr2 is a positive regulator of bone formation
-
Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P. 2002. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 129 (16): 3783-93.
-
(2002)
Development
, vol.129
, Issue.16
, pp. 3783-3793
-
-
Eswarakumar, V.P.1
Monsonego-Ornan, E.2
Pines, M.3
Antonopoulou, I.4
Morriss-Kay, G.M.5
Lonai, P.6
-
64
-
-
0038782306
-
Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth
-
Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, et al. 2003. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130 (13): 3063-74.
-
(2003)
Development
, vol.130
, Issue.13
, pp. 3063-3074
-
-
Yu, K.1
Xu, J.2
Liu, Z.3
Sosic, D.4
Shao, J.5
Olson, E.N.6
-
65
-
-
0037414760
-
The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2
-
Kim HJ, Kim JH, Bae SC, Choi JY, Ryoo HM. 2003. The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J Biol Chem 278 (1): 319-26.
-
(2003)
J Biol Chem
, vol.278
, Issue.1
, pp. 319-326
-
-
Kim, H.J.1
Kim, J.H.2
Bae, S.C.3
Choi, J.Y.4
Ryoo, H.M.5
-
67
-
-
33646550902
-
Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/ β-catenin but not bone morphogenetic protein signaling
-
Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E. 2006. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/ β-catenin but not bone morphogenetic protein signaling. J Biol Chem 281 (10): 6203-10.
-
(2006)
J Biol Chem
, vol.281
, Issue.10
, pp. 6203-6210
-
-
Deregowski, V.1
Gazzerro, E.2
Priest, L.3
Rydziel, S.4
Canalis, E.5
-
68
-
-
4444246433
-
Coordinated activation of notch, Wnt, and transforming growth factor-β signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity
-
Zamurovic N, Cappellen D, Rohner D, Susa M. 2004. Coordinated activation of notch, Wnt, and transforming growth factor-β signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279 (36): 37704-15.
-
(2004)
J Biol Chem
, vol.279
, Issue.36
, pp. 37704-37715
-
-
Zamurovic, N.1
Cappellen, D.2
Rohner, D.3
Susa, M.4
-
69
-
-
40449084522
-
Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
-
Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, et al. 2008. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14 (3): 306-14.
-
(2008)
Nat Med
, vol.14
, Issue.3
, pp. 306-314
-
-
Hilton, M.J.1
Tu, X.2
Wu, X.3
Bai, S.4
Zhao, H.5
Kobayashi, T.6
-
70
-
-
36248995245
-
Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal
-
Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera EM, et al. 2007. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131 (5): 980-93.
-
(2007)
Cell
, vol.131
, Issue.5
, pp. 980-993
-
-
Fuentealba, L.C.1
Eivers, E.2
Ikeda, A.3
Hurtado, C.4
Kuroda, H.5
Pera, E.M.6
-
71
-
-
33846688094
-
Balancing BMP signaling through integrated inputs into the Smad1 linker
-
Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J. 2007. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 25 (3): 441-54.
-
(2007)
Mol Cell
, vol.25
, Issue.3
, pp. 441-454
-
-
Sapkota, G.1
Alarcon, C.2
Spagnoli, F.M.3
Brivanlou, A.H.4
Massague, J.5
-
72
-
-
10744228365
-
Receptor tyrosine kinases inhibit bone morphogenetic protein-Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells
-
Nakayama K, Tamura Y, Suzawa M, Harada S, Fukumoto S, Kato M, et al. 2003. Receptor tyrosine kinases inhibit bone morphogenetic protein-Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells. J Bone Miner Res 18 (5): 827-35.
-
(2003)
J Bone Miner Res
, vol.18
, Issue.5
, pp. 827-835
-
-
Nakayama, K.1
Tamura, Y.2
Suzawa, M.3
Harada, S.4
Fukumoto, S.5
Kato, M.6
-
73
-
-
13444262316
-
Smad1, β-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription
-
Hu MC, Rosenblum ND. 2005. Smad1, β-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 132 (1): 215-25.
-
(2005)
Development
, vol.132
, Issue.1
, pp. 215-225
-
-
Hu, M.C.1
Rosenblum, N.D.2
-
74
-
-
0034682515
-
Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-β and wnt pathways
-
Labbe E, Letamendia A, Attisano L. 2000. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-β and wnt pathways. Proc Natl Acad Sci U S A 97 (15): 8358-63.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.15
, pp. 8358-8363
-
-
Labbe, E.1
Letamendia, A.2
Attisano, L.3
-
75
-
-
0034815142
-
Opposite effects of bone morphogenetic protein-2 and transforming growth factor-β 1 on osteoblast differentiation
-
Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Gallea S, et al. 2001. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-β 1 on osteoblast differentiation. Bone 29 (4): 323-30.
-
(2001)
Bone
, vol.29
, Issue.4
, pp. 323-330
-
-
Spinella-Jaegle, S.1
Roman-Roman, S.2
Faucheu, C.3
Dunn, F.W.4
Kawai, S.5
Gallea, S.6
-
76
-
-
79958831567
-
Biphasic effects of transforming growth factor β on bone morphogenetic protein-induced osteoblast differentiation
-
de Gorter DJJ, van Dinther M, Korchynskyi O, ten Dijke P. 2011. Biphasic effects of transforming growth factor β on bone morphogenetic protein-induced osteoblast differentiation. J Bone Miner Res 26 (6): 1178-87.
-
(2011)
J Bone Miner Res
, vol.26
, Issue.6
, pp. 1178-1187
-
-
de Gorter, D.J.J.1
van Dinther, M.2
Korchynskyi, O.3
ten Dijke, P.4
-
77
-
-
0035207971
-
Transforming growth factor-β 1 supports the rapid morphogenesis of heterotopic endochondral bone initiated by human osteogenic protein-1 via the synergistic upregulation of molecular markers
-
Matsaba T, Ramoshebi LN, Crooks J, Ripamonti U. 2001. Transforming growth factor-β 1 supports the rapid morphogenesis of heterotopic endochondral bone initiated by human osteogenic protein-1 via the synergistic upregulation of molecular markers. Growth Factors 19 (2): 73-86.
-
(2001)
Growth Factors
, vol.19
, Issue.2
, pp. 73-86
-
-
Matsaba, T.1
Ramoshebi, L.N.2
Crooks, J.3
Ripamonti, U.4
-
78
-
-
33746987081
-
The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling
-
Zhao M, Qiao M, Harris SE, Chen D, Oyajobi BO, Mundy GR. 2006. The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol 26 (16): 6197-208.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.16
, pp. 6197-6208
-
-
Zhao, M.1
Qiao, M.2
Harris, S.E.3
Chen, D.4
Oyajobi, B.O.5
Mundy, G.R.6
-
79
-
-
34447509873
-
Endogenous TNF α lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-κ B
-
Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN. 2007. Endogenous TNF α lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-κ B. J Bone Miner Res 22 (5): 646-55.
-
(2007)
J Bone Miner Res
, vol.22
, Issue.5
, pp. 646-655
-
-
Li, Y.1
Li, A.2
Strait, K.3
Zhang, H.4
Nanes, M.S.5
Weitzmann, M.N.6
-
80
-
-
34047152284
-
TNF-α inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling
-
Mukai T, Otsuka F, Otani H, Yamashita M, Takasugi K, Inagaki K, et al. 2007. TNF-α inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochem Biophys Res Commun 356 (4): 1004-10.
-
(2007)
Biochem Biophys Res Commun
, vol.356
, Issue.4
, pp. 1004-1010
-
-
Mukai, T.1
Otsuka, F.2
Otani, H.3
Yamashita, M.4
Takasugi, K.5
Inagaki, K.6
-
81
-
-
77649249596
-
TGF-β type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling
-
Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X. 2010. TGF-β type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol 12 (3): 224-34.
-
(2010)
Nat Cell Biol
, vol.12
, Issue.3
, pp. 224-234
-
-
Qiu, T.1
Wu, X.2
Zhang, F.3
Clemens, T.L.4
Wan, M.5
Cao, X.6
|