-
2
-
-
31644442650
-
Unsupervised extraction of visual attention objects in color images
-
Jan
-
J. Han, K. N. Ngan, M. Li, and H.-J. Zhang, "Unsupervised extraction of visual attention objects in color images, " IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 1, pp. 141-145, Jan. 2006.
-
(2006)
IEEE Trans. Circuits Syst. Video Technol
, vol.16
, Issue.1
, pp. 141-145
-
-
Han, J.1
Ngan, K.N.2
Li, M.3
Zhang, H.-J.4
-
3
-
-
70350267831
-
Picture collage
-
Aug
-
T. Liu et al., "Picture collage, " IEEE Trans. Multimedia, vol. 11, no. 7, pp. 1225-1239, Aug. 2009.
-
(2009)
IEEE Trans. Multimedia
, vol.11
, Issue.7
, pp. 1225-1239
-
-
Liu, T.1
-
4
-
-
84961738684
-
Image visual attention computation and application via the learning of object attributes
-
Oct
-
J. Han et al., "Image visual attention computation and application via the learning of object attributes, " Mach. Vis. Appl., vol. 25, no. 7, pp. 1-13, Oct. 2013.
-
(2013)
Mach. Vis. Appl
, vol.25
, Issue.7
, pp. 1-13
-
-
Han, J.1
-
5
-
-
84908669619
-
Weakly supervised learning for target detection in remote sensing images
-
Apr
-
D. Zhang et al., "Weakly supervised learning for target detection in remote sensing images, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 4, pp. 701-705, Apr. 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, Issue.4
, pp. 701-705
-
-
Zhang, D.1
-
6
-
-
85028166694
-
Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
-
Jun
-
J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, "Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325-3337, Jun. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.53
, Issue.6
, pp. 3325-3337
-
-
Han, J.1
Zhang, D.2
Cheng, G.3
Guo, L.4
Ren, J.5
-
7
-
-
84902279254
-
Weakly-supervised cross-domain dictionary learning for visual recognition
-
Aug
-
F. Zhu and L. Shao, "Weakly-supervised cross-domain dictionary learning for visual recognition, " Int. J. Comput. Vis., vol. 109, nos. 1-2, pp. 42-59, Aug. 2014.
-
(2014)
Int. J. Comput. Vis
, vol.109
, Issue.1-2
, pp. 42-59
-
-
Zhu, F.1
Shao, L.2
-
8
-
-
33745335782
-
Specific object retrieval based on salient regions
-
Oct
-
L. Shao and M. Brady, "Specific object retrieval based on salient regions, " Patt. Recognit., vol. 39, no. 10, pp. 1932-1948, Oct. 2006.
-
(2006)
Patt. Recognit
, vol.39
, Issue.10
, pp. 1932-1948
-
-
Shao, L.1
Brady, M.2
-
9
-
-
33845227187
-
Invariant salient regions based image retrieval under viewpoint and illumination variations
-
Dec
-
L. Shao and M. Brady, "Invariant salient regions based image retrieval under viewpoint and illumination variations, " J. Vis. Commun. Image Represent., vol. 17, no. 6, pp. 1256-1272, Dec. 2006.
-
(2006)
J. Vis. Commun. Image Represent
, vol.17
, Issue.6
, pp. 1256-1272
-
-
Shao, L.1
Brady, M.2
-
10
-
-
84893418304
-
Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
-
Mar
-
J. Han et al., "Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding, " ISPRS J. Photogramm. Remote Sens., vol. 89, pp. 37-48, Mar. 2014.
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.89
, pp. 37-48
-
-
Han, J.1
-
11
-
-
84904761891
-
Video abstraction based on fMRI-driven visual attention model
-
Oct
-
J. Han et al., "Video abstraction based on fMRI-driven visual attention model, " Inf. Sci., vol. 281, pp. 781-796, Oct. 2014.
-
(2014)
Inf. Sci
, vol.281
, pp. 781-796
-
-
Han, J.1
-
12
-
-
84926497889
-
Learning computational models of video memorability from fMRI brain imaging
-
J. Han et al., "Learning computational models of video memorability from fMRI brain imaging" IEEE Trans. Cybern., 2014. Doi: 10.1109/TCYB.2014.2358647.
-
(2014)
IEEE Trans. Cybern
-
-
Han, J.1
-
13
-
-
84856473161
-
Saliency from hierarchical adaptation through decorrelation and variance normalization
-
Jan
-
A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil, "Saliency from hierarchical adaptation through decorrelation and variance normalization, " Image Vis. Comput., vol. 30, no. 1, pp. 51-64, Jan. 2012.
-
(2012)
Image Vis. Comput
, vol.30
, Issue.1
, pp. 51-64
-
-
Garcia-Diaz, A.1
Fdez-Vidal, X.R.2
Pardo, X.M.3
Dosil, R.4
-
14
-
-
84866687480
-
Exploiting local and global patch rarities for saliency detection
-
Jun
-
A. Borji and L. Itti, "Exploiting local and global patch rarities for saliency detection, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., Providence, RI, USA, Jun. 2012, pp. 478-485.
-
(2012)
Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit., Providence, RI, USA
, pp. 478-485
-
-
Borji, A.1
Itti, L.2
-
15
-
-
84865331032
-
Context-Aware saliency detection
-
Oct
-
S. Goferman, L. Zelnik-Manor, and A. Tal, "Context-Aware saliency detection, " IEEE Trans. Patt. Anal. Mach. Intell., vol. 34, no. 10, pp. 1915-1926, Oct. 2012.
-
(2012)
IEEE Trans. Patt. Anal. Mach. Intell
, vol.34
, Issue.10
, pp. 1915-1926
-
-
Goferman, S.1
Zelnik-Manor, L.2
Tal, A.3
-
16
-
-
84926497888
-
Background prior based salient object detection via deep reconstruction residual
-
J. Han et al., "Background prior based salient object detection via deep reconstruction residual, " IEEE Trans. Circuits Syst. Video Technol., 2014. Doi: 10.1109/TCSVT.2014.2381471.
-
(2014)
IEEE Trans. Circuits Syst. Video Technol
-
-
Han, J.1
-
17
-
-
0032204063
-
A model of saliency-based visual attention for rapid scene analysis
-
Nov
-
L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis, " IEEE Trans. Patt. Anal. Mach. Intell., vol. 20, no. 11, pp. 1254-1259, Nov. 1998.
-
(1998)
IEEE Trans. Patt. Anal. Mach. Intell
, vol.20
, Issue.11
, pp. 1254-1259
-
-
Itti, L.1
Koch, C.2
Niebur, E.3
-
18
-
-
77953205576
-
Learning to predict where humans look
-
Oct
-
T. Judd, K. Ehinger, F. Durand, and A. Torralba, "Learning to predict where humans look, " in Proc. 12th Int. Conf. Comput. Vision, Kyoto, Japan, Oct. 2009, pp. 2106-2113.
-
(2009)
Proc. 12th Int. Conf. Comput. Vision, Kyoto, Japan
, pp. 2106-2113
-
-
Judd, T.1
Ehinger, K.2
Durand, F.3
Torralba, A.4
-
19
-
-
84863359424
-
Dynamic visual attention: Searching for coding length increments
-
X. Hou and L. Zhang, "Dynamic visual attention: Searching for coding length increments, " in Proc. Conf. Adv. Neural Inform. Process. Syst., 2008, pp. 681-688.
-
(2008)
Proc. Conf. Adv. Neural Inform. Process. Syst
, pp. 681-688
-
-
Hou, X.1
Zhang, L.2
-
20
-
-
84897583648
-
An object-oriented visual saliency detection framework based on sparse coding representations
-
Dec
-
J. Han et al., "An object-oriented visual saliency detection framework based on sparse coding representations, " IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 12, pp. 2009-2021, Dec. 2013.
-
(2013)
IEEE Trans. Circuits Syst. Video Technol
, vol.23
, Issue.12
, pp. 2009-2021
-
-
Han, J.1
-
21
-
-
84866672748
-
A unified approach to salient object detection via low rank matrix recovery
-
X. Shen and Y. Wu, "A unified approach to salient object detection via low rank matrix recovery, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., 2012, pp. 853-860.
-
(2012)
Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit
, pp. 853-860
-
-
Shen, X.1
Wu, Y.2
-
23
-
-
51949107445
-
Spatio-Temporal saliency detection using phase spectrum of quaternion Fourier transform
-
C. Guo, Q. Ma, and L. Zhang, "Spatio-Temporal saliency detection using phase spectrum of quaternion Fourier transform, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., 2008, pp. 1-8.
-
(2008)
Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit
, pp. 1-8
-
-
Guo, C.1
Ma, Q.2
Zhang, L.3
-
24
-
-
81855172211
-
Image signature: Highlighting sparse salient regions
-
Jan
-
X. Hou, J. Harel, and C. Koch, "Image signature: Highlighting sparse salient regions, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1, pp. 194-201, Jan. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.34
, Issue.1
, pp. 194-201
-
-
Hou, X.1
Harel, J.2
Koch, C.3
-
25
-
-
84867891493
-
Quaternion-based spectral saliency detection for eye fixation prediction
-
B. Schauerte and R. Stiefelhagen, "Quaternion-based spectral saliency detection for eye fixation prediction, " in Proc. Eur. Conf. Comput. Vis., 2012, pp. 116-129.
-
(2012)
Proc. Eur. Conf. Comput. Vis
, pp. 116-129
-
-
Schauerte, B.1
Stiefelhagen, R.2
-
26
-
-
84455208536
-
Bottom-up saliency based on weighted sparse coding residual
-
Dec
-
B. Han, H. Zhu, and Y. Ding, "Bottom-up saliency based on weighted sparse coding residual, " in Proc. ACM Int. Conf. Multimedia, Scottsdale, AZ, USA, Dec. 2011, pp. 1117-1120.
-
(2011)
Proc ACM Int. Conf. Multimedia, Scottsdale, AZ, USA
, pp. 1117-1120
-
-
Han, B.1
Zhu, H.2
Ding, Y.3
-
27
-
-
79957836414
-
Learning a saliency map using fixated locations in natural scenes
-
Mar
-
Q. Zhao and C. Koch, "Learning a saliency map using fixated locations in natural scenes, " J. Vis., vol. 11, no. 3, p. 9, Mar. 2011.
-
(2011)
J. Vis
, vol.11
, Issue.3
, pp. 9
-
-
Zhao, Q.1
Koch, C.2
-
28
-
-
78650512633
-
Learning to detect a salient object
-
Feb
-
T. Liu et al., "Learning to detect a salient object, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2, pp. 353-367, Feb. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.33
, Issue.2
, pp. 353-367
-
-
Liu, T.1
-
29
-
-
84866641899
-
Boosting bottom-up and top-down visual features for saliency estimation
-
Jun
-
A. Borji, "Boosting bottom-up and top-down visual features for saliency estimation, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., Providence, RI, USA, Jun. 2012, pp. 438-445.
-
(2012)
Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit., Providence, RI, USA
, pp. 438-445
-
-
Borji, A.1
-
30
-
-
85161958871
-
Predicting human gaze using low-level saliency combined with face detection
-
M. Cerf, J. Harel, W. Einhäuser, and C. Koch, "Predicting human gaze using low-level saliency combined with face detection, " in Proc. Conf. Adv. Neural Inform. Process. Syst., 2008, pp. 241-248.
-
(2008)
Proc. Conf. Adv. Neural Inform. Process. Syst
, pp. 241-248
-
-
Cerf, M.1
Harel, J.2
Einhäuser, W.3
Koch, C.4
-
31
-
-
84911440518
-
Learning high-level concepts by training a deep network on eye fixations
-
Lake Tahoe, NV, USA
-
C. Shen, M. Song, and Q. Zhao, "Learning high-level concepts by training a deep network on eye fixations, " in Proc. Deep Learn. Unsupervised Feature Learn. Workshop, Lake Tahoe, NV, USA, 2012.
-
(2012)
Proc Deep Learn. Unsupervised Feature Learn. Workshop
-
-
Shen, C.1
Song, M.2
Zhao, Q.3
-
32
-
-
0035286497
-
Computational modelling of visual attention
-
Mar
-
L. Itti and C. Koch, "Computational modelling of visual attention, " Neuroscience, vol. 2, no. 3, pp. 194-203, Mar. 2001.
-
(2001)
Neuroscience
, vol.2
, Issue.3
, pp. 194-203
-
-
Itti, L.1
Koch, C.2
-
33
-
-
84871656223
-
Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study
-
Jan
-
A. Borji, D. N. Sihite, and L. Itti, "Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study, " IEEE Trans. Image Process., vol. 22, no. 1, pp. 55-69, Jan. 2013.
-
(2013)
IEEE Trans. Image Process
, vol.22
, Issue.1
, pp. 55-69
-
-
Borji, A.1
Sihite, D.N.2
Itti, L.3
-
34
-
-
45249100930
-
On the plausibility of the discriminant center-surround hypothesis for visual saliency
-
Jun
-
D. Gao, V. Mahadevan, and N. Vasconcelos, "On the plausibility of the discriminant center-surround hypothesis for visual saliency, " J. Vis., vol. 8, no. 7, p. 13, Jun. 2008.
-
(2008)
J. Vis
, vol.8
, Issue.7
, pp. 13
-
-
Gao, D.1
Mahadevan, V.2
Vasconcelos, N.3
-
35
-
-
77950364024
-
Static and space-Time visual saliency detection by self-resemblance
-
Nov
-
H. J. Seo and P. Milanfar, "Static and space-Time visual saliency detection by self-resemblance, " J. Vis., vol. 9, no. 12, p. 15, Nov. 2009.
-
(2009)
J. Vis
, vol.9
, Issue.12
, pp. 15
-
-
Seo, H.J.1
Milanfar, P.2
-
36
-
-
58149506125
-
SUN: A Bayesian framework for saliency using natural statistics
-
Dec
-
L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, "SUN: A Bayesian framework for saliency using natural statistics, " J. Vis., vol. 8, no. 7, p. 32, Dec. 2008.
-
(2008)
J. Vis
, vol.8
, Issue.7
, pp. 32
-
-
Zhang, L.1
Tong, M.H.2
Marks, T.K.3
Shan, H.4
Cottrell, G.W.5
-
37
-
-
62649143331
-
Saliency, attention, and visual search: An information theoretic approach
-
Mar
-
N. D. Bruce and J. K. Tsotsos, "Saliency, attention, and visual search: An information theoretic approach, " J. Vis., vol. 9, no. 3, p. 5, Mar. 2009.
-
(2009)
J. Vis
, vol.9
, Issue.3
, pp. 5
-
-
Bruce, N.D.1
Tsotsos, J.K.2
-
38
-
-
84874537215
-
Visual saliency based on scale-space analysis in the frequency domain
-
Apr
-
J. Li, M. D. Levine, X. An, X. Xu, and H. He, "Visual saliency based on scale-space analysis in the frequency domain, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 4, pp. 996-1010, Apr. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.4
, pp. 996-1010
-
-
Li, J.1
Levine, M.D.2
An, X.3
Xu, X.4
He, H.5
-
39
-
-
84883201530
-
Deep learning of representations: Looking forward
-
Y. Bengio, "Deep learning of representations: Looking forward, " in Proc. Stat. Lang. Speech Process., 2013, pp. 1-37.
-
(2013)
Proc. Stat. Lang. Speech Process
, pp. 1-37
-
-
Bengio, Y.1
-
40
-
-
84930197754
-
Blind image quality assessment via deep learning
-
W. Hou, X. Gao, D. Tao, and X. Li, "Blind image quality assessment via deep learning, " IEEE Trans. Neural Netw. Learn. Syst., 2014. Doi: 10.1109/TNNLS.2014.2336852.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst
-
-
Hou, W.1
Gao, X.2
Tao, D.3
Li, X.4
-
41
-
-
84906486689
-
OverFeat: Integrated recognition, localization and detection using convolutional networks
-
Dec, 1312.6229
-
P. Sermanet et al., "OverFeat: Integrated recognition, localization and detection using convolutional networks, " arXiv preprint arXiv:1312.6229, Dec. 2013.
-
(2013)
ArXiv Preprint ArXiv
-
-
Sermanet, P.1
-
42
-
-
84897724955
-
Multi-feature fusion via hierarchical regression for multimedia analysis
-
Apr
-
Y. Yang et al., "Multi-feature fusion via hierarchical regression for multimedia analysis, " IEEE Trans. Multimedia, vol. 15, no. 3, pp. 572-581, Apr. 2013.
-
(2013)
IEEE Trans. Multimedia
, vol.15
, Issue.3
, pp. 572-581
-
-
Yang, Y.1
-
43
-
-
84904548965
-
Deep learning of representations for unsupervised and transfer learning
-
Y. Bengio, "Deep learning of representations for unsupervised and transfer learning, " in Proc. JMLR Workshops Conf., vol. 27. 2012, pp. 17-36.
-
(2012)
Proc. JMLR Workshops Conf
, vol.27
, pp. 17-36
-
-
Bengio, Y.1
-
44
-
-
84862302263
-
Deep learners benefit more from out-of-distribution examples
-
Y. Bengio et al., "Deep learners benefit more from out-of-distribution examples, " in Proc. Worshop. Artif. Intell. Stat., 2011, pp. 164-172.
-
(2011)
Proc. Worshop. Artif. Intell. Stat
, pp. 164-172
-
-
Bengio, Y.1
-
45
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level image representations using convolutional neural networks, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., 2013, pp. 1717-1724.
-
(2013)
Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit
, pp. 1717-1724
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
46
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition, " in Proc. Eur. Conf. Comput. Vision, 2014, pp. 346-361.
-
(2014)
Proc. Eur. Conf. Comput. Vision
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
47
-
-
0002834189
-
Autoencoders, minimum description length, and Helmholtz free energy
-
G. E. Hinton and R. S. Zemel, "Autoencoders, minimum description length, and Helmholtz free energy, " in Proc. Conf. Adv. Neural Inform. Process. Syst., 1994, p. 3.
-
(1994)
Proc. Conf. Adv. Neural Inform. Process. Syst
, pp. 3
-
-
Hinton, G.E.1
Zemel, R.S.2
-
48
-
-
69349090197
-
Learning deep architectures for AI
-
Jan
-
Y. Bengio, "Learning deep architectures for AI, " Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, Jan. 2009.
-
(2009)
Found. Trends Mach. Learn
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
49
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Jan
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn. Res., vol. 11, pp. 3371-3408, Jan. 2010.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
50
-
-
70049094447
-
Sparse feature learning for deep belief networks
-
MarcAurelio Ranzato, L. Boureau, and Y. LeCun
-
Y. MarcAurelio Ranzato, L. Boureau, and Y. LeCun, "Sparse feature learning for deep belief networks, " in Proc. Conf. Adv. Neural Inform. Process. Syst., 2007, pp. 1185-1192.
-
(2007)
Proc. Conf. Adv. Neural Inform. Process. Syst
, pp. 1185-1192
-
-
-
51
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
52
-
-
84866054643
-
-
Cambridge, MA, USA, MIT Press
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Representations by Back-Propagating Errors. Cambridge, MA, USA: MIT Press, 1988.
-
(1988)
Learning Representations by Back-Propagating Errors
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
53
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Jul
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
55
-
-
84864037603
-
Graph-based visual saliency
-
J. Harel, C. Koch, and P. Perona, "Graph-based visual saliency, " in Proc. Conf. Adv. Neural Inform. Process. Syst., 2006, pp. 545-552.
-
(2006)
Proc. Conf. Adv. Neural Inform. Process. Syst
, pp. 545-552
-
-
Harel, J.1
Koch, C.2
Perona, P.3
-
56
-
-
84879853539
-
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
-
Aug
-
H. Shin, M. Orton, D. Collins, S. Doran, and M. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.8
, pp. 1930-1943
-
-
Shin, H.1
Orton, M.2
Collins, D.3
Doran, S.4
Leach, M.5
-
57
-
-
79955112208
-
Probabilistic multi-Task learning for visual saliency estimation in video
-
May
-
J. Li, Y. Tian, and T. Huang, "Probabilistic multi-Task learning for visual saliency estimation in video, " Int. J. Comput. Vision, vol. 90, no. 2, pp. 150-165, May 2010.
-
(2010)
Int. J. Comput. Vision
, vol.90
, Issue.2
, pp. 150-165
-
-
Li, J.1
Tian, Y.2
Huang, T.3
-
58
-
-
84897467150
-
Visual saliency with statistical priors
-
May
-
J. Li, Y. Tian, and T. Huang, "Visual saliency with statistical priors, " Int. J. Comput. Vision, vol. 107, no. 3, pp. 239-253, May 2014.
-
(2014)
Int. J. Comput. Vision
, vol.107
, Issue.3
, pp. 239-253
-
-
Li, J.1
Tian, Y.2
Huang, T.3
-
59
-
-
84875720554
-
Content-based retrieval of human actions from realistic video databases
-
Jul
-
S. Jones and L. Shao, "Content-based retrieval of human actions from realistic video databases, " Inform. Sci., vol. 236, pp. 56-65, Jul. 2013.
-
(2013)
Inform. Sci
, vol.236
, pp. 56-65
-
-
Jones, S.1
Shao, L.2
-
60
-
-
84903266238
-
Learning object-To-class kernels for scene classification
-
Aug
-
L. Zhang, X. Zhen, and L. Shao, "Learning object-To-class kernels for scene classification, " IEEE Trans. Image Process., vol. 23, no. 8, pp. 3241-3253, Aug. 2014.
-
(2014)
IEEE Trans. Image Process
, vol.23
, Issue.8
, pp. 3241-3253
-
-
Zhang, L.1
Zhen, X.2
Shao, L.3
|