메뉴 건너뛰기




Volumn 46, Issue 2, 2016, Pages 487-498

Two-Stage Learning to Predict Human Eye Fixations via SDAEs

Author keywords

Deep networks; eye fixation prediction; saliency detection; stacked denoising autoencoders (SDAEs)

Indexed keywords

EYE MOVEMENTS;

EID: 84923658437     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2015.2404432     Document Type: Article
Times cited : (129)

References (60)
  • 2
    • 31644442650 scopus 로고    scopus 로고
    • Unsupervised extraction of visual attention objects in color images
    • Jan
    • J. Han, K. N. Ngan, M. Li, and H.-J. Zhang, "Unsupervised extraction of visual attention objects in color images, " IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 1, pp. 141-145, Jan. 2006.
    • (2006) IEEE Trans. Circuits Syst. Video Technol , vol.16 , Issue.1 , pp. 141-145
    • Han, J.1    Ngan, K.N.2    Li, M.3    Zhang, H.-J.4
  • 3
    • 70350267831 scopus 로고    scopus 로고
    • Picture collage
    • Aug
    • T. Liu et al., "Picture collage, " IEEE Trans. Multimedia, vol. 11, no. 7, pp. 1225-1239, Aug. 2009.
    • (2009) IEEE Trans. Multimedia , vol.11 , Issue.7 , pp. 1225-1239
    • Liu, T.1
  • 4
    • 84961738684 scopus 로고    scopus 로고
    • Image visual attention computation and application via the learning of object attributes
    • Oct
    • J. Han et al., "Image visual attention computation and application via the learning of object attributes, " Mach. Vis. Appl., vol. 25, no. 7, pp. 1-13, Oct. 2013.
    • (2013) Mach. Vis. Appl , vol.25 , Issue.7 , pp. 1-13
    • Han, J.1
  • 5
    • 84908669619 scopus 로고    scopus 로고
    • Weakly supervised learning for target detection in remote sensing images
    • Apr
    • D. Zhang et al., "Weakly supervised learning for target detection in remote sensing images, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 4, pp. 701-705, Apr. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.4 , pp. 701-705
    • Zhang, D.1
  • 6
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • Jun
    • J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, "Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325-3337, Jun. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 7
    • 84902279254 scopus 로고    scopus 로고
    • Weakly-supervised cross-domain dictionary learning for visual recognition
    • Aug
    • F. Zhu and L. Shao, "Weakly-supervised cross-domain dictionary learning for visual recognition, " Int. J. Comput. Vis., vol. 109, nos. 1-2, pp. 42-59, Aug. 2014.
    • (2014) Int. J. Comput. Vis , vol.109 , Issue.1-2 , pp. 42-59
    • Zhu, F.1    Shao, L.2
  • 8
    • 33745335782 scopus 로고    scopus 로고
    • Specific object retrieval based on salient regions
    • Oct
    • L. Shao and M. Brady, "Specific object retrieval based on salient regions, " Patt. Recognit., vol. 39, no. 10, pp. 1932-1948, Oct. 2006.
    • (2006) Patt. Recognit , vol.39 , Issue.10 , pp. 1932-1948
    • Shao, L.1    Brady, M.2
  • 9
    • 33845227187 scopus 로고    scopus 로고
    • Invariant salient regions based image retrieval under viewpoint and illumination variations
    • Dec
    • L. Shao and M. Brady, "Invariant salient regions based image retrieval under viewpoint and illumination variations, " J. Vis. Commun. Image Represent., vol. 17, no. 6, pp. 1256-1272, Dec. 2006.
    • (2006) J. Vis. Commun. Image Represent , vol.17 , Issue.6 , pp. 1256-1272
    • Shao, L.1    Brady, M.2
  • 10
    • 84893418304 scopus 로고    scopus 로고
    • Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
    • Mar
    • J. Han et al., "Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding, " ISPRS J. Photogramm. Remote Sens., vol. 89, pp. 37-48, Mar. 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.89 , pp. 37-48
    • Han, J.1
  • 11
    • 84904761891 scopus 로고    scopus 로고
    • Video abstraction based on fMRI-driven visual attention model
    • Oct
    • J. Han et al., "Video abstraction based on fMRI-driven visual attention model, " Inf. Sci., vol. 281, pp. 781-796, Oct. 2014.
    • (2014) Inf. Sci , vol.281 , pp. 781-796
    • Han, J.1
  • 12
    • 84926497889 scopus 로고    scopus 로고
    • Learning computational models of video memorability from fMRI brain imaging
    • J. Han et al., "Learning computational models of video memorability from fMRI brain imaging" IEEE Trans. Cybern., 2014. Doi: 10.1109/TCYB.2014.2358647.
    • (2014) IEEE Trans. Cybern
    • Han, J.1
  • 13
    • 84856473161 scopus 로고    scopus 로고
    • Saliency from hierarchical adaptation through decorrelation and variance normalization
    • Jan
    • A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil, "Saliency from hierarchical adaptation through decorrelation and variance normalization, " Image Vis. Comput., vol. 30, no. 1, pp. 51-64, Jan. 2012.
    • (2012) Image Vis. Comput , vol.30 , Issue.1 , pp. 51-64
    • Garcia-Diaz, A.1    Fdez-Vidal, X.R.2    Pardo, X.M.3    Dosil, R.4
  • 16
    • 84926497888 scopus 로고    scopus 로고
    • Background prior based salient object detection via deep reconstruction residual
    • J. Han et al., "Background prior based salient object detection via deep reconstruction residual, " IEEE Trans. Circuits Syst. Video Technol., 2014. Doi: 10.1109/TCSVT.2014.2381471.
    • (2014) IEEE Trans. Circuits Syst. Video Technol
    • Han, J.1
  • 17
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • Nov
    • L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis, " IEEE Trans. Patt. Anal. Mach. Intell., vol. 20, no. 11, pp. 1254-1259, Nov. 1998.
    • (1998) IEEE Trans. Patt. Anal. Mach. Intell , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 19
    • 84863359424 scopus 로고    scopus 로고
    • Dynamic visual attention: Searching for coding length increments
    • X. Hou and L. Zhang, "Dynamic visual attention: Searching for coding length increments, " in Proc. Conf. Adv. Neural Inform. Process. Syst., 2008, pp. 681-688.
    • (2008) Proc. Conf. Adv. Neural Inform. Process. Syst , pp. 681-688
    • Hou, X.1    Zhang, L.2
  • 20
    • 84897583648 scopus 로고    scopus 로고
    • An object-oriented visual saliency detection framework based on sparse coding representations
    • Dec
    • J. Han et al., "An object-oriented visual saliency detection framework based on sparse coding representations, " IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 12, pp. 2009-2021, Dec. 2013.
    • (2013) IEEE Trans. Circuits Syst. Video Technol , vol.23 , Issue.12 , pp. 2009-2021
    • Han, J.1
  • 21
    • 84866672748 scopus 로고    scopus 로고
    • A unified approach to salient object detection via low rank matrix recovery
    • X. Shen and Y. Wu, "A unified approach to salient object detection via low rank matrix recovery, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., 2012, pp. 853-860.
    • (2012) Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit , pp. 853-860
    • Shen, X.1    Wu, Y.2
  • 23
    • 51949107445 scopus 로고    scopus 로고
    • Spatio-Temporal saliency detection using phase spectrum of quaternion Fourier transform
    • C. Guo, Q. Ma, and L. Zhang, "Spatio-Temporal saliency detection using phase spectrum of quaternion Fourier transform, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., 2008, pp. 1-8.
    • (2008) Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit , pp. 1-8
    • Guo, C.1    Ma, Q.2    Zhang, L.3
  • 24
    • 81855172211 scopus 로고    scopus 로고
    • Image signature: Highlighting sparse salient regions
    • Jan
    • X. Hou, J. Harel, and C. Koch, "Image signature: Highlighting sparse salient regions, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1, pp. 194-201, Jan. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell , vol.34 , Issue.1 , pp. 194-201
    • Hou, X.1    Harel, J.2    Koch, C.3
  • 25
    • 84867891493 scopus 로고    scopus 로고
    • Quaternion-based spectral saliency detection for eye fixation prediction
    • B. Schauerte and R. Stiefelhagen, "Quaternion-based spectral saliency detection for eye fixation prediction, " in Proc. Eur. Conf. Comput. Vis., 2012, pp. 116-129.
    • (2012) Proc. Eur. Conf. Comput. Vis , pp. 116-129
    • Schauerte, B.1    Stiefelhagen, R.2
  • 27
    • 79957836414 scopus 로고    scopus 로고
    • Learning a saliency map using fixated locations in natural scenes
    • Mar
    • Q. Zhao and C. Koch, "Learning a saliency map using fixated locations in natural scenes, " J. Vis., vol. 11, no. 3, p. 9, Mar. 2011.
    • (2011) J. Vis , vol.11 , Issue.3 , pp. 9
    • Zhao, Q.1    Koch, C.2
  • 28
    • 78650512633 scopus 로고    scopus 로고
    • Learning to detect a salient object
    • Feb
    • T. Liu et al., "Learning to detect a salient object, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2, pp. 353-367, Feb. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.2 , pp. 353-367
    • Liu, T.1
  • 31
  • 32
    • 0035286497 scopus 로고    scopus 로고
    • Computational modelling of visual attention
    • Mar
    • L. Itti and C. Koch, "Computational modelling of visual attention, " Neuroscience, vol. 2, no. 3, pp. 194-203, Mar. 2001.
    • (2001) Neuroscience , vol.2 , Issue.3 , pp. 194-203
    • Itti, L.1    Koch, C.2
  • 33
    • 84871656223 scopus 로고    scopus 로고
    • Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study
    • Jan
    • A. Borji, D. N. Sihite, and L. Itti, "Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study, " IEEE Trans. Image Process., vol. 22, no. 1, pp. 55-69, Jan. 2013.
    • (2013) IEEE Trans. Image Process , vol.22 , Issue.1 , pp. 55-69
    • Borji, A.1    Sihite, D.N.2    Itti, L.3
  • 34
    • 45249100930 scopus 로고    scopus 로고
    • On the plausibility of the discriminant center-surround hypothesis for visual saliency
    • Jun
    • D. Gao, V. Mahadevan, and N. Vasconcelos, "On the plausibility of the discriminant center-surround hypothesis for visual saliency, " J. Vis., vol. 8, no. 7, p. 13, Jun. 2008.
    • (2008) J. Vis , vol.8 , Issue.7 , pp. 13
    • Gao, D.1    Mahadevan, V.2    Vasconcelos, N.3
  • 35
    • 77950364024 scopus 로고    scopus 로고
    • Static and space-Time visual saliency detection by self-resemblance
    • Nov
    • H. J. Seo and P. Milanfar, "Static and space-Time visual saliency detection by self-resemblance, " J. Vis., vol. 9, no. 12, p. 15, Nov. 2009.
    • (2009) J. Vis , vol.9 , Issue.12 , pp. 15
    • Seo, H.J.1    Milanfar, P.2
  • 36
    • 58149506125 scopus 로고    scopus 로고
    • SUN: A Bayesian framework for saliency using natural statistics
    • Dec
    • L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, "SUN: A Bayesian framework for saliency using natural statistics, " J. Vis., vol. 8, no. 7, p. 32, Dec. 2008.
    • (2008) J. Vis , vol.8 , Issue.7 , pp. 32
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 37
    • 62649143331 scopus 로고    scopus 로고
    • Saliency, attention, and visual search: An information theoretic approach
    • Mar
    • N. D. Bruce and J. K. Tsotsos, "Saliency, attention, and visual search: An information theoretic approach, " J. Vis., vol. 9, no. 3, p. 5, Mar. 2009.
    • (2009) J. Vis , vol.9 , Issue.3 , pp. 5
    • Bruce, N.D.1    Tsotsos, J.K.2
  • 38
    • 84874537215 scopus 로고    scopus 로고
    • Visual saliency based on scale-space analysis in the frequency domain
    • Apr
    • J. Li, M. D. Levine, X. An, X. Xu, and H. He, "Visual saliency based on scale-space analysis in the frequency domain, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 4, pp. 996-1010, Apr. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.4 , pp. 996-1010
    • Li, J.1    Levine, M.D.2    An, X.3    Xu, X.4    He, H.5
  • 39
    • 84883201530 scopus 로고    scopus 로고
    • Deep learning of representations: Looking forward
    • Y. Bengio, "Deep learning of representations: Looking forward, " in Proc. Stat. Lang. Speech Process., 2013, pp. 1-37.
    • (2013) Proc. Stat. Lang. Speech Process , pp. 1-37
    • Bengio, Y.1
  • 41
    • 84906486689 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • Dec, 1312.6229
    • P. Sermanet et al., "OverFeat: Integrated recognition, localization and detection using convolutional networks, " arXiv preprint arXiv:1312.6229, Dec. 2013.
    • (2013) ArXiv Preprint ArXiv
    • Sermanet, P.1
  • 42
    • 84897724955 scopus 로고    scopus 로고
    • Multi-feature fusion via hierarchical regression for multimedia analysis
    • Apr
    • Y. Yang et al., "Multi-feature fusion via hierarchical regression for multimedia analysis, " IEEE Trans. Multimedia, vol. 15, no. 3, pp. 572-581, Apr. 2013.
    • (2013) IEEE Trans. Multimedia , vol.15 , Issue.3 , pp. 572-581
    • Yang, Y.1
  • 43
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning, " in Proc. JMLR Workshops Conf., vol. 27. 2012, pp. 17-36.
    • (2012) Proc. JMLR Workshops Conf , vol.27 , pp. 17-36
    • Bengio, Y.1
  • 44
    • 84862302263 scopus 로고    scopus 로고
    • Deep learners benefit more from out-of-distribution examples
    • Y. Bengio et al., "Deep learners benefit more from out-of-distribution examples, " in Proc. Worshop. Artif. Intell. Stat., 2011, pp. 164-172.
    • (2011) Proc. Worshop. Artif. Intell. Stat , pp. 164-172
    • Bengio, Y.1
  • 45
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level image representations using convolutional neural networks, " in Proc. IEEE Int. Conf. Comput. Vis. Patt. Recognit., 2013, pp. 1717-1724.
    • (2013) Proc IEEE Int. Conf. Comput. Vis. Patt. Recognit , pp. 1717-1724
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 46
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition, " in Proc. Eur. Conf. Comput. Vision, 2014, pp. 346-361.
    • (2014) Proc. Eur. Conf. Comput. Vision , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 48
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Jan
    • Y. Bengio, "Learning deep architectures for AI, " Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, Jan. 2009.
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 49
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Jan
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn. Res., vol. 11, pp. 3371-3408, Jan. 2010.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 50
    • 70049094447 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • MarcAurelio Ranzato, L. Boureau, and Y. LeCun
    • Y. MarcAurelio Ranzato, L. Boureau, and Y. LeCun, "Sparse feature learning for deep belief networks, " in Proc. Conf. Adv. Neural Inform. Process. Syst., 2007, pp. 1185-1192.
    • (2007) Proc. Conf. Adv. Neural Inform. Process. Syst , pp. 1185-1192
  • 51
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 53
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Jul
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 56
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
    • Aug
    • H. Shin, M. Orton, D. Collins, S. Doran, and M. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.8 , pp. 1930-1943
    • Shin, H.1    Orton, M.2    Collins, D.3    Doran, S.4    Leach, M.5
  • 57
    • 79955112208 scopus 로고    scopus 로고
    • Probabilistic multi-Task learning for visual saliency estimation in video
    • May
    • J. Li, Y. Tian, and T. Huang, "Probabilistic multi-Task learning for visual saliency estimation in video, " Int. J. Comput. Vision, vol. 90, no. 2, pp. 150-165, May 2010.
    • (2010) Int. J. Comput. Vision , vol.90 , Issue.2 , pp. 150-165
    • Li, J.1    Tian, Y.2    Huang, T.3
  • 58
    • 84897467150 scopus 로고    scopus 로고
    • Visual saliency with statistical priors
    • May
    • J. Li, Y. Tian, and T. Huang, "Visual saliency with statistical priors, " Int. J. Comput. Vision, vol. 107, no. 3, pp. 239-253, May 2014.
    • (2014) Int. J. Comput. Vision , vol.107 , Issue.3 , pp. 239-253
    • Li, J.1    Tian, Y.2    Huang, T.3
  • 59
    • 84875720554 scopus 로고    scopus 로고
    • Content-based retrieval of human actions from realistic video databases
    • Jul
    • S. Jones and L. Shao, "Content-based retrieval of human actions from realistic video databases, " Inform. Sci., vol. 236, pp. 56-65, Jul. 2013.
    • (2013) Inform. Sci , vol.236 , pp. 56-65
    • Jones, S.1    Shao, L.2
  • 60
    • 84903266238 scopus 로고    scopus 로고
    • Learning object-To-class kernels for scene classification
    • Aug
    • L. Zhang, X. Zhen, and L. Shao, "Learning object-To-class kernels for scene classification, " IEEE Trans. Image Process., vol. 23, no. 8, pp. 3241-3253, Aug. 2014.
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.8 , pp. 3241-3253
    • Zhang, L.1    Zhen, X.2    Shao, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.