메뉴 건너뛰기




Volumn 60, Issue 9, 2014, Pages 3092-3100

Process data analytics in the era of big data

Author keywords

Big data; Machine learning; Optimization; Process control; Process data analytics; Process improvement

Indexed keywords


EID: 84905960935     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14523     Document Type: Article
Times cited : (342)

References (52)
  • 1
    • 84869488689 scopus 로고    scopus 로고
    • Advances in mathematical programming models for enterprise-wide optimization
    • Grossmann IE. Advances in mathematical programming models for enterprise-wide optimization. Comput Chem Eng. 2012;47:2-18.
    • (2012) Comput Chem Eng. , vol.47 , pp. 2-18
    • Grossmann, I.E.1
  • 2
    • 84869487494 scopus 로고    scopus 로고
    • Smart manufacturing, manufacturing intelligence and demand-dynamic performance
    • Davis J, Edgar T, Porter J, Bernaden J, Sarli M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng. 2012;47:145-56.
    • (2012) Comput Chem Eng. , vol.47 , pp. 145-156
    • Davis, J.1    Edgar, T.2    Porter, J.3    Bernaden, J.4    Sarli, M.5
  • 3
    • 0037432755 scopus 로고    scopus 로고
    • The Human Genome Project: lessons from large-scale biology
    • Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science. 2003;300(5617):286-90.
    • (2003) Science. , vol.300 , Issue.5617 , pp. 286-290
    • Collins, F.S.1    Morgan, M.2    Patrinos, A.3
  • 4
    • 73349104079 scopus 로고    scopus 로고
    • An overview of recent developments in genomics and associated statistical methods
    • Bickel PJ, Brown JB, Huang H, Li Q. An overview of recent developments in genomics and associated statistical methods. Philos Trans A Math Phys Eng Sci. 2009;367:4313-37.
    • (2009) Philos Trans A Math Phys Eng Sci. , vol.367 , pp. 4313-4337
    • Bickel, P.J.1    Brown, J.B.2    Huang, H.3    Li, Q.4
  • 5
    • 84905961237 scopus 로고    scopus 로고
    • 3M project. BGI.Accessed on May 10, 2014.
    • 3M project. BGI. http://www.genomics.cn/en/navigation/show_navigation?nid=5656. Accessed on May 10, 2014.
  • 8
    • 0002111519 scopus 로고
    • Soft-sensors for process estimation and inferential control
    • Tham M. Soft-sensors for process estimation and inferential control. J Process Control. 1991;1(1):3-14.
    • (1991) J Process Control. , vol.1 , Issue.1 , pp. 3-14
    • Tham, M.1
  • 9
    • 84905961420 scopus 로고
    • A data-based process modeling approach and its applications. In Proceedings of the 3rd IFAC DYCORD Symposium. College Park, MD
    • Qin SJ, McAvoy TJ. A data-based process modeling approach and its applications. In Proceedings of the 3rd IFAC DYCORD Symposium. College Park, MD: 1992:321-6.
    • (1992) , pp. 321-326
    • Qin, S.J.1    McAvoy, T.J.2
  • 10
    • 84905961210 scopus 로고    scopus 로고
    • Big Data: A Revolution that Will Transform How We Live, Work, and Think. Boston, MA: Houghton Mifflin Harcourt
    • Mayer-Schönberger V, Cukier K. Big Data: A Revolution that Will Transform How We Live, Work, and Think. Boston, MA: Houghton Mifflin Harcourt; 2013.
    • (2013)
    • Mayer-Schönberger, V.1    Cukier, K.2
  • 11
    • 84905961488 scopus 로고    scopus 로고
    • Big data: the next frontier for innovation, competition, and productivity. McKinsey & Company.Published May, Accessed on May 10, 2014.
    • Manyika J, Chui M, Brown B, et al. Big data: the next frontier for innovation, competition, and productivity. McKinsey & Company. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation. Published May 2011. Accessed on May 10, 2014.
    • (2011)
    • Manyika, J.1    Chui, M.2    Brown, B.3
  • 12
    • 85052723106 scopus 로고    scopus 로고
    • National Research Council. Washington, DC: National Academies Press
    • National Research Council. Frontiers in Massive Data Analysis. Washington, DC: National Academies Press; 2013.
    • (2013) Frontiers in Massive Data Analysis
  • 13
    • 84905961785 scopus 로고    scopus 로고
    • Tata Consultancy Services. The Emerging Big Returns on Big Data: A TCS 2013 Global Trend Study. Tata Consultancy Services: Accessed on May 10, 2014.
    • Tata Consultancy Services. The Emerging Big Returns on Big Data: A TCS 2013 Global Trend Study. Tata Consultancy Services: 2013. http://www.tcs.com/big-data-study/Pages/download-report.aspx. Accessed on May 10, 2014.
    • (2013)
  • 14
    • 80051667632 scopus 로고    scopus 로고
    • Process systems engineering: from Solvay to modern bio- and nanotechnology. A history of development, successes and prospects for the future
    • Stephanopoulos G, Reklaitis GV. Process systems engineering: from Solvay to modern bio- and nanotechnology. A history of development, successes and prospects for the future. Chem Eng Sci. 2011;66:4272-306.
    • (2011) Chem Eng Sci. , vol.66 , pp. 4272-4306
    • Stephanopoulos, G.1    Reklaitis, G.V.2
  • 15
    • 28244475768 scopus 로고    scopus 로고
    • Semiconductor manufacturing process control and monitoring: a Fab-wide framework
    • Qin SJ, Cherry G, Good R, Wang J, Harrison CA. Semiconductor manufacturing process control and monitoring: a Fab-wide framework. J Process Control 2006;16:179-91.
    • (2006) J Process Control , vol.16 , pp. 179-191
    • Qin, S.J.1    Cherry, G.2    Good, R.3    Wang, J.4    Harrison, C.A.5
  • 16
    • 58449086366 scopus 로고    scopus 로고
    • Drowning in data: informatics and modeling challenges in a data-rich networked world
    • Venkatasubramanian V. Drowning in data: informatics and modeling challenges in a data-rich networked world. AIChE J. 2009;55(1):2-8.
    • (2009) AIChE J. , vol.55 , Issue.1 , pp. 2-8
    • Venkatasubramanian, V.1
  • 17
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Anal Chim Acta. 1986;185:1-17.
    • (1986) Anal Chim Acta. , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 18
    • 0016890987 scopus 로고
    • Reconciliation and rectification of process flow and inventory data
    • Mah RS, Stanley GM, Downing DM. Reconciliation and rectification of process flow and inventory data. Ind Eng Chem Process Des Dev. 1976, 15(1), 175-83.
    • (1976) Ind Eng Chem Process Des Dev , vol.15 , Issue.1 , pp. 175-183
    • Mah, R.S.1    Stanley, G.M.2    Downing, D.M.3
  • 19
    • 0027949580 scopus 로고
    • Representation of process trends-IV. Induction of real-time patterns from operating data for diagnosis and supervisory control
    • Bakshi BR, Stephanopoulos G. Representation of process trends-IV. Induction of real-time patterns from operating data for diagnosis and supervisory control. Comput Chem Eng. 1994;18(4):303-32.
    • (1994) Comput Chem Eng. , vol.18 , Issue.4 , pp. 303-332
    • Bakshi, B.R.1    Stephanopoulos, G.2
  • 20
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82(1):35-45.
    • (1960) J Basic Eng. , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.E.1
  • 22
    • 58949091424 scopus 로고    scopus 로고
    • Perspectives for process systems engineering-personal views from academia and industry
    • Klatt KU, Marquardt W. Perspectives for process systems engineering-personal views from academia and industry. Comput Chem Eng. 2009;33:536-50.
    • (2009) Comput Chem Eng. , vol.33 , pp. 536-550
    • Klatt, K.U.1    Marquardt, W.2
  • 23
    • 0030296884 scopus 로고    scopus 로고
    • Missing data methods in PCA and PLS: score calculations with incomplete observations
    • Nelson PR, Taylor PA, MacGregor JF. Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemometr Intell Lab Syst. 1996;35:45-65.
    • (1996) Chemometr Intell Lab Syst. , vol.35 , pp. 45-65
    • Nelson, P.R.1    Taylor, P.A.2    MacGregor, J.F.3
  • 24
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504-7.
    • (2006) Science. , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 26
    • 0242709395 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: a survey and empirical demonstration. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2002:102-11.
    • (2002) , pp. 102-111
    • Keogh, E.1    Kasetty, S.2
  • 27
    • 78649672225 scopus 로고    scopus 로고
    • A review on time series data mining
    • Fu TC. A review on time series data mining. Eng Appl Artif Intell. 2011;24:164-81.
    • (2011) Eng Appl Artif Intell. , vol.24 , pp. 164-181
    • Fu, T.C.1
  • 28
    • 0013366844 scopus 로고    scopus 로고
    • Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods
    • Yu H, MacGregor JF. Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometr Intell Lab Syst. 2003;67:125-44.
    • (2003) Chemometr Intell Lab Syst. , vol.67 , pp. 125-144
    • Yu, H.1    MacGregor, J.F.2
  • 29
    • 0028905904 scopus 로고
    • Process analysis, monitoring and diagnosis, using multivariate projection methods
    • Kourti T, MacGregor JF. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemometr Intell Lab Syst. 1995;28(1):3-21.
    • (1995) Chemometr Intell Lab Syst. , vol.28 , Issue.1 , pp. 3-21
    • Kourti, T.1    MacGregor, J.F.2
  • 31
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • Qin SJ. Survey on data-driven industrial process monitoring and diagnosis. Annu Rev Control. 2012;36:220-34.
    • (2012) Annu Rev Control. , vol.36 , pp. 220-234
    • Qin, S.J.1
  • 32
    • 84872859706 scopus 로고    scopus 로고
    • Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures
    • Qin SJ, Zheng YY. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE J. 2013;59:496-504.
    • (2013) AIChE J. , vol.59 , pp. 496-504
    • Qin, S.J.1    Zheng, Y.Y.2
  • 33
    • 49249127452 scopus 로고    scopus 로고
    • Robust online monitoring for multimode processes based on nonlinear external analysis
    • Ge ZQ, Yang CJ, Song ZH, Wang HQ. Robust online monitoring for multimode processes based on nonlinear external analysis. Ind Eng Chem Res. 2008;47:4775-83.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 4775-4783
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3    Wang, H.Q.4
  • 34
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhal A, Seborg DE. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J Process Control. 2006;16:601-13.
    • (2006) J Process Control. , vol.16 , pp. 601-613
    • Singhal, A.1    Seborg, D.E.2
  • 35
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W, Storer R, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometr Intell Lab Syst. 1995;30(1):179-96.
    • (1995) Chemometr Intell Lab Syst. , vol.30 , Issue.1 , pp. 179-196
    • Ku, W.1    Storer, R.2    Georgakis, C.3
  • 36
    • 84875515270 scopus 로고    scopus 로고
    • Performance monitoring of model-based controllers via model residual assessment
    • Sun ZL, Qin SJ, Singhal A, Megan L. Performance monitoring of model-based controllers via model residual assessment. J Process Control. 2013;23:473-82.
    • (2013) J Process Control. , vol.23 , pp. 473-482
    • Sun, Z.L.1    Qin, S.J.2    Singhal, A.3    Megan, L.4
  • 37
    • 28144459550 scopus 로고
    • Some recent development in a concept of causality
    • Granger C. Some recent development in a concept of causality. J Econometr. 1988;39:199-211.
    • (1988) J Econometr. , vol.39 , pp. 199-211
    • Granger, C.1
  • 38
    • 84897109593 scopus 로고    scopus 로고
    • Root cause diagnosis of plant-wide oscillations using granger causality
    • Yuan T, Qin SJ. Root cause diagnosis of plant-wide oscillations using granger causality. J Process Control. 2014;24:450-9.
    • (2014) J Process Control. , vol.24 , pp. 450-459
    • Yuan, T.1    Qin, S.J.2
  • 39
    • 0040287998 scopus 로고
    • Artificial neural network models of knowledge representation in chemical engineering
    • Hoskins JC, Himmelblau DM. Artificial neural network models of knowledge representation in chemical engineering. Comput Chem Eng. 1988;12:881-90.
    • (1988) Comput Chem Eng. , vol.12 , pp. 881-890
    • Hoskins, J.C.1    Himmelblau, D.M.2
  • 40
    • 0025415732 scopus 로고
    • Forecasting and control using adaptive connectionist networks
    • Ydstie BE. Forecasting and control using adaptive connectionist networks. Comput Chem Eng. 1990;14(4):583-99.
    • (1990) Comput Chem Eng. , vol.14 , Issue.4 , pp. 583-599
    • Ydstie, B.E.1
  • 41
    • 84905961416 scopus 로고    scopus 로고
    • The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag
    • Vapnik V. The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag; 1999.
    • (1999)
    • Vapnik, V.1
  • 43
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2011;3(1):1-122.
    • (2011) Found Trends Mach Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 44
    • 84905961130 scopus 로고    scopus 로고
    • Turning Award.Accessed on May 10, 2014.
    • Russell SJ. Judea Pearl A. M. Turning Award. http://amturing.acm.org/award_winners/pearl_2658896.cfm. Accessed on May 10, 2014.
    • Russell, S.J.1    Judea Pearl, A.M.2
  • 46
    • 84899948547 scopus 로고    scopus 로고
    • Learning surrogate models for simulation-based optimization
    • Cozad A, Sahinidis NV, Miller DC. Learning surrogate models for simulation-based optimization. AIChE J. 2014;60(6):2211-27.
    • (2014) AIChE J. , vol.60 , Issue.6 , pp. 2211-2227
    • Cozad, A.1    Sahinidis, N.V.2    Miller, D.C.3
  • 47
    • 1942532245 scopus 로고    scopus 로고
    • Dynamic programming in a heuristically confined state space: a stochastic resource-constrained project scheduling application
    • Choi J, Realff MJ, Lee JH. Dynamic programming in a heuristically confined state space: a stochastic resource-constrained project scheduling application. Comput Chem Eng. 2004;28(6):1039-58.
    • (2004) Comput Chem Eng. , vol.28 , Issue.6 , pp. 1039-1058
    • Choi, J.1    Realff, M.J.2    Lee, J.H.3
  • 48
    • 84905961243 scopus 로고    scopus 로고
    • Hadoop, a free software program, finds uses beyond search, The New York Times. March 16, 2009.Accessed on May 10, 2014.
    • Vance A. Hadoop, a free software program, finds uses beyond search, The New York Times. March 16, 2009. http://www.nytimes.com/2009/03/17/technology/business-computing/17cloud.html?_r=0. Accessed on May 10, 2014.
    • Vance, A.1
  • 49
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107-13.
    • (2008) Commun ACM. , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 50
    • 77952775707 scopus 로고    scopus 로고
    • Hive-a petabyte scale data warehouse using Hadoop. IEEE 26th International Conference on Data Engineering
    • Thusoo A, Sarma JS, Jain N, et al. Hive-a petabyte scale data warehouse using Hadoop. IEEE 26th International Conference on Data Engineering. 2010; 996-1005.
    • (2010) , pp. 996-1005
    • Thusoo, A.1    Sarma, J.S.2    Jain, N.3
  • 51
    • 83455229796 scopus 로고    scopus 로고
    • Towards scalable one-pass analytics using MapReduce. In IPDPSW '11 Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum. Washington, DC: IEEE Computer Society
    • Mazur E, Li B, Diao Y, Shenoy P. Towards scalable one-pass analytics using MapReduce. In IPDPSW '11 Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum. Washington, DC: IEEE Computer Society; 2011:1102-11.
    • (2011) , pp. 1102-1111
    • Mazur, E.1    Li, B.2    Diao, Y.3    Shenoy, P.4
  • 52
    • 79959939881 scopus 로고    scopus 로고
    • A platform for scalable one-pass analytics using MapReduce. In SIGMOD '11 Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. New York, NY: Association for Computing Machinery
    • Li B, Mazur E, Diao Y, McGregor A, Shenoy P. A platform for scalable one-pass analytics using MapReduce. In SIGMOD '11 Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. New York, NY: Association for Computing Machinery; 2011:985-996.
    • (2011) , pp. 985-996
    • Li, B.1    Mazur, E.2    Diao, Y.3    McGregor, A.4    Shenoy, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.