메뉴 건너뛰기




Volumn 37, Issue 1-2, 2013, Pages 293-314

A nonlinear probabilistic method and contribution analysis for machine condition monitoring

Author keywords

Condition based maintenance; Contribution analysis; Feature selection; Generative topographic mapping; Machine health monitoring

Indexed keywords

CONDITION BASED MAINTENANCE; CONTRIBUTION ANALYSIS; FAILURE PROBABILITY; GENERATIVE TOPOGRAPHIC MAPPING; MACHINE CONDITION MONITORING; MACHINE HEALTH MONITORING; POTENTIAL FEATURES; PROBABILISTIC METHODS;

EID: 84876902144     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2013.01.010     Document Type: Article
Times cited : (40)

References (35)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K.S. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Mech. Syst. Signal Process. 20 2006 1483 1510
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 2
    • 79953899252 scopus 로고    scopus 로고
    • Prognostic modeling options for remaining useful life estimation by industry
    • J.Z. Sikorska, M. Hodkiewicz, and L. Ma Prognostic modeling options for remaining useful life estimation by industry Mech. Syst. Signal Process. 25 5 2011 1803 1836
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.5 , pp. 1803-1836
    • Sikorska, J.Z.1    Hodkiewicz, M.2    Ma, L.3
  • 3
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
    • H. Qiu, J. Lee, J. Lin, and G. Yu Robust performance degradation assessment methods for enhanced rolling element bearing prognostics Adv. Eng. Informatics 17 3-4 2003 127 140
    • (2003) Adv. Eng. Informatics , vol.17 , Issue.34 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 4
    • 79951660524 scopus 로고    scopus 로고
    • Prognosis of defect propagation based on recurrent neural networks, prognosis of defect propagation based on recurrent neural networks
    • A. Malhi, R. Yan, and R.X. Gao Prognosis of defect propagation based on recurrent neural networks, prognosis of defect propagation based on recurrent neural networks IEEE Trans. Instrum. Meas. 60 3 2011 703 711
    • (2011) IEEE Trans. Instrum. Meas. , vol.60 , Issue.3 , pp. 703-711
    • Malhi, A.1    Yan, R.2    Gao, R.X.3
  • 5
    • 33749663808 scopus 로고    scopus 로고
    • Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
    • R. Huang, L. Xi, X. Li, C. Richard Liu, H. Qiu, and J. Lee Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods Mech. Syst. Signal Process. 21 1 2007 193 207
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.1 , pp. 193-207
    • Huang, R.1    Xi, L.2    Li, X.3    Richard Liu, C.4    Qiu, H.5    Lee, J.6
  • 6
    • 78649765886 scopus 로고    scopus 로고
    • Health condition prediction of gears using a recurrent neural network approach
    • Z. Tian, and M.J. Zuo Health condition prediction of gears using a recurrent neural network approach IEEE Trans. Reliab. 59 4 2010 700 705
    • (2010) IEEE Trans. Reliab. , vol.59 , Issue.4 , pp. 700-705
    • Tian, Z.1    Zuo, M.J.2
  • 7
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • A. Malhi, R. Yan, and R.X. Gao PCA-based feature selection scheme for machine defect classification IEEE Trans. Instrum. Meas. 53 6 2004 1517 1525
    • (2004) IEEE Trans. Instrum. Meas. , vol.53 , Issue.6 , pp. 1517-1525
    • Malhi, A.1    Yan, R.2    Gao, R.X.3
  • 8
    • 50149090206 scopus 로고    scopus 로고
    • Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery
    • E. Zio, P. Baraldi, and G. Gola Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery Appl. Soft Comput. 8 4 2008 1365 1380
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1365-1380
    • Zio, E.1    Baraldi, P.2    Gola, G.3
  • 9
    • 63449084621 scopus 로고    scopus 로고
    • Use of autocorrelation of wavelet coefficients for fault diagnosis
    • J. Rafiee, and P.W. Tse Use of autocorrelation of wavelet coefficients for fault diagnosis Mech. Syst. Signal Process. 23 5 2009 1554 1572
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.5 , pp. 1554-1572
    • Rafiee, J.1    Tse, P.W.2
  • 10
    • 79952311266 scopus 로고    scopus 로고
    • A dynamic multi-scale Markov model based methodology for remaining life prediction
    • J. Yan, and C. Guo A dynamic multi-scale Markov model based methodology for remaining life prediction Mech. Syst. Signal Process. 25 4 2011 1364 1376
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.4 , pp. 1364-1376
    • Yan, J.1    Guo, C.2
  • 11
    • 78651282656 scopus 로고    scopus 로고
    • Tool wear monitoring using acoustic emission by dominant feature identification
    • J. Zhou, C.K. Pang, Z. Zhong, and F.L. Lewis Tool wear monitoring using acoustic emission by dominant feature identification IEEE Trans. Instrum. Meas. 60 2 2011 547 559
    • (2011) IEEE Trans. Instrum. Meas. , vol.60 , Issue.2 , pp. 547-559
    • Zhou, J.1    Pang, C.K.2    Zhong, Z.3    Lewis, F.L.4
  • 12
    • 84863980704 scopus 로고    scopus 로고
    • Health monitoring of cooling fans based on Mahalanobis distance with mRMR feature selection
    • X. Jin, E.W.M. Ma, L.L. Cheng, and M. Pecht Health monitoring of cooling fans based on Mahalanobis distance with mRMR feature selection IEEE Trans. Instrum. Meas. 61 8 2012 2222 2229
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.8 , pp. 2222-2229
    • Jin, X.1    Ma, E.W.M.2    Cheng, L.L.3    Pecht, M.4
  • 13
    • 79955827452 scopus 로고    scopus 로고
    • A hybrid feature selection scheme and self-organizing map model for machine health assessment
    • J. Yu A hybrid feature selection scheme and self-organizing map model for machine health assessment Appl. Soft Comput. 11 5 2011 4041 4054
    • (2011) Appl. Soft Comput. , vol.11 , Issue.5 , pp. 4041-4054
    • Yu, J.1
  • 15
    • 84857361309 scopus 로고    scopus 로고
    • Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
    • J. Sun, H Zuo, W. Wang, and M.G. Pecht Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance Mech. Syst. Signal Process. 28 4 2012 585 596
    • (2012) Mech. Syst. Signal Process. , vol.28 , Issue.4 , pp. 585-596
    • Sun, J.1    Zuo, H.2    Wang, W.3    Pecht, M.G.4
  • 16
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • W. Caesarendra, A. Widodo, P.H. Thom, and B.S. Yang Application of relevance vector machine and logistic regression for machine degradation assessment Mech. Syst. Signal Process. 24 4 2010 1161 1171
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.4 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Thom, P.H.3    Yang, B.S.4
  • 17
    • 79960043301 scopus 로고    scopus 로고
    • Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
    • J. Yu Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models Mech. Syst. Signal Process. 25 7 2011 2573 2588
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.7 , pp. 2573-2588
    • Yu, J.1
  • 18
    • 78049444138 scopus 로고    scopus 로고
    • Multivariate dynamic statistical-based fault detection of non-Gaussian vibration systems
    • Z. Ge, U. Kruger, L. Xie, Z. Song, and L. Lamont Multivariate dynamic statistical-based fault detection of non-Gaussian vibration systems Mech. Syst. Signal Process. 24 8 2010 2972 2984
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.8 , pp. 2972-2984
    • Ge, Z.1    Kruger, U.2    Xie, L.3    Song, Z.4    Lamont, L.5
  • 19
    • 0034375291 scopus 로고    scopus 로고
    • Bearing diagnostics based on pattern recognition of statistical parameters
    • F. Xi, Q. Sun, and G. Krishnappa Bearing diagnostics based on pattern recognition of statistical parameters J. Vib. Control 6 3 2000 75 92
    • (2000) J. Vib. Control , vol.6 , Issue.3 , pp. 75-92
    • Xi, F.1    Sun, Q.2    Krishnappa, G.3
  • 20
    • 84990575058 scopus 로고
    • Orthonormal bases of compact supported wavelets
    • J. Daubechies Orthonormal bases of compact supported wavelets Commun. Pure Appl. Math. 41 7 1988 909 996
    • (1988) Commun. Pure Appl. Math. , vol.41 , Issue.7 , pp. 909-996
    • Daubechies, J.1
  • 21
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • X. Lou, and K.A. Loparo Bearing fault diagnosis based on wavelet transform and fuzzy inference Mech. Syst. Signal Process. 18 5 2004 1077 1095
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.5 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 22
    • 0030199361 scopus 로고    scopus 로고
    • Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals
    • K. Mori, N. Kasashima, T. Yoshioka, and Y. Ueno Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals Wear 195 1-2 1996 162 168
    • (1996) Wear , vol.195 , Issue.12 , pp. 162-168
    • Mori, K.1    Kasashima, N.2    Yoshioka, T.3    Ueno, Y.4
  • 23
    • 38249010331 scopus 로고
    • Intelligent monitoring of ball bearings
    • T. Liu, and J. Mengel Intelligent monitoring of ball bearings Mech. Syst. Signal Process. 6 5 1992 419 431
    • (1992) Mech. Syst. Signal Process. , vol.6 , Issue.5 , pp. 419-431
    • Liu, T.1    Mengel, J.2
  • 24
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • W. Ku, R.H. Storer, and C. Georgakis Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 30 1 1995 179 196
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , Issue.1 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 25
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • C.M. Bishop, and M. Svensen Developments of the generative topographic mapping Neurocomputing 21 1-3 1998 203 224
    • (1998) Neurocomputing , vol.21 , Issue.13 , pp. 203-224
    • Bishop, C.M.1    Svensen, M.2
  • 27
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, M.N. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc. B 39 1977 1 38
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, M.N.2    Rubin, D.B.3
  • 28
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • J.A. Westerhuis, S.P. Gurden, and A.K. Smilde Generalized contribution plots in multivariate statistical process monitoring Chemom. Intell. Lab. Syst. 51 1 2000 95 114
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , Issue.1 , pp. 95-114
    • Westerhuis, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 31
    • 79955828997 scopus 로고    scopus 로고
    • Moffett Field, CA: IMS, Univ. Cincinnati. NASA Ames Prognostics Data Repository, NASA Ames
    • J. Lee, H. Qiu, G. Yu, J. Lin, Rexnord Technical Services: Bearing Data Set, Moffett Field, CA: IMS, Univ. Cincinnati. NASA Ames Prognostics Data Repository, NASA Ames, 2007.
    • (2007) Rexnord Technical Services: Bearing Data Set
    • Lee, J.1    Qiu, H.2    Yu, G.3    Lin, J.4
  • 32
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • E.B. Martin, and A.J. Morris Non-parametric confidence bounds for process performance monitoring charts J. Process Control 6 1996 349 358
    • (1996) J. Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 33
    • 84863980711 scopus 로고    scopus 로고
    • Health condition monitoring of machines based on hidden Markov model and contribution analysis
    • J. Yu Health condition monitoring of machines based on hidden Markov model and contribution analysis IEEE Trans. Instrum. Meas. 61 8 2012 2200 2211
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.8 , pp. 2200-2211
    • Yu, J.1
  • 34
    • 58049182562 scopus 로고    scopus 로고
    • Robust bearing performance degradation assessment method based on improved wavelet packet - Support vector data description
    • Y. Pan, J. Chen, and L. Guo Robust bearing performance degradation assessment method based on improved wavelet packet - support vector data description Mech. Syst. Signal Process. 23 3 2009 669 681
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.3 , pp. 669-681
    • Pan, Y.1    Chen, J.2    Guo, L.3
  • 35
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • D.M.J. Tax, and R.P.W. Duin Support vector domain description Pattern Recognition Lett. 20 11-13 1999 1191 1199
    • (1999) Pattern Recognition Lett. , vol.20 , Issue.1113 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.