-
1
-
-
0029866060
-
Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11
-
Asghari A., Bothast R.J., Doran J.B., Ingram L.O. Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J. Ind. Microbiol. Biotechnol. 1996, 16:42-47.
-
(1996)
J. Ind. Microbiol. Biotechnol.
, vol.16
, pp. 42-47
-
-
Asghari, A.1
Bothast, R.J.2
Doran, J.B.3
Ingram, L.O.4
-
2
-
-
70349322629
-
Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw
-
Bak J.S., Ko J.K., Choi I.G., Park Y.C., Seo J.H., Kim K.H. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol. Bioeng. 2009, 104:471-482.
-
(2009)
Biotechnol. Bioeng.
, vol.104
, pp. 471-482
-
-
Bak, J.S.1
Ko, J.K.2
Choi, I.G.3
Park, Y.C.4
Seo, J.H.5
Kim, K.H.6
-
3
-
-
79551670374
-
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
-
Ha S.J., Galazka J.M., Kim S.R., Choi J.H., Yang X., Seo J.H., Louise Glass N., Cate J.H.D., Jin Y.S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. 2011, 108:504-509.
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
, pp. 504-509
-
-
Ha, S.J.1
Galazka, J.M.2
Kim, S.R.3
Choi, J.H.4
Yang, X.5
Seo, J.H.6
Louise Glass, N.7
Cate, J.H.D.8
Jin, Y.S.9
-
4
-
-
33947191174
-
Towards industrial pentose-fermenting yeast strains
-
Hahn-Hägerdal B., Karhumaa K., Fonseca C., Spencer-Martins I., Gorwa-Grauslund M. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 2007, 74:937-953.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.74
, pp. 937-953
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Fonseca, C.3
Spencer-Martins, I.4
Gorwa-Grauslund, M.5
-
5
-
-
0031832290
-
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
-
Ho N.W.Y., Chen Z., Brainard A.P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 1998, 64:1852-1859.
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.Y.1
Chen, Z.2
Brainard, A.P.3
-
6
-
-
33644879465
-
The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
Jeppsson M., Bengtsson O., Franke K., Lee H., Hahn-Hägerdal B., Gorwa-Grauslund M.F. The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93:665-673.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
Bengtsson, O.2
Franke, K.3
Lee, H.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
-
7
-
-
29144502422
-
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
-
Jin Y.S., Alper H., Yang Y.T., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249-8256.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8249-8256
-
-
Jin, Y.S.1
Alper, H.2
Yang, Y.T.3
Stephanopoulos, G.4
-
8
-
-
0033826838
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis
-
Jin Y.S., Lee T.H., Choi Y.D., Ryu Y.W., Seo J.H. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis. J. Microbiol. Biotechnol. 2000, 10:564-567.
-
(2000)
J. Microbiol. Biotechnol.
, vol.10
, pp. 564-567
-
-
Jin, Y.S.1
Lee, T.H.2
Choi, Y.D.3
Ryu, Y.W.4
Seo, J.H.5
-
9
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity
-
Jin Y.S., Ni H., Laplaza J.M., Jeffries T.W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69:495-503.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.2
Laplaza, J.M.3
Jeffries, T.W.4
-
10
-
-
33847202270
-
Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa K., Sanchez R., Hahn-Hagerdal B., Gorwa-Grauslund M.-F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 2007, 6:5.
-
(2007)
Microb. Cell Fact.
, vol.6
, pp. 5
-
-
Karhumaa, K.1
Sanchez, R.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.-F.4
-
11
-
-
44449171842
-
Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1
-
Katahira S., Ito M., Takema H., Fujita Y., Tanino T., Tanaka T., Fukuda H., Kondo A. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb. Technol. 2008, 43:115-119.
-
(2008)
Enzyme Microb. Technol.
, vol.43
, pp. 115-119
-
-
Katahira, S.1
Ito, M.2
Takema, H.3
Fujita, Y.4
Tanino, T.5
Tanaka, T.6
Fukuda, H.7
Kondo, A.8
-
12
-
-
0036842385
-
Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae
-
Kim M.D., Jeun Y.S., Kim S.G., Ryu Y.W., Seo J.H. Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzyme Microb. Technol. 2002, 31:862-866.
-
(2002)
Enzyme Microb. Technol.
, vol.31
, pp. 862-866
-
-
Kim, M.D.1
Jeun, Y.S.2
Kim, S.G.3
Ryu, Y.W.4
Seo, J.H.5
-
13
-
-
0141539197
-
Effects of xylulokinase activity on ethanol production from d-xylulose by recombinant Saccharomyces cerevisiae
-
Lee T.H., Kim M.D., Park Y.C., Bae S.M., Ryu Y.W., Seo J.H. Effects of xylulokinase activity on ethanol production from d-xylulose by recombinant Saccharomyces cerevisiae. J. Appl. Microbiol. 2003, 95:847-852.
-
(2003)
J. Appl. Microbiol.
, vol.95
, pp. 847-852
-
-
Lee, T.H.1
Kim, M.D.2
Park, Y.C.3
Bae, S.M.4
Ryu, Y.W.5
Seo, J.H.6
-
14
-
-
0002705227
-
A parametric study on ethanol production from xylose by Pichia stipitis
-
Lee T.Y., Kim M.D., Kim K.Y., Park K.M., Ryu Y.W., Seo J.H. A parametric study on ethanol production from xylose by Pichia stipitis. Biotechnol. Bioprocess Eng. 2000, 5:27-31.
-
(2000)
Biotechnol. Bioprocess Eng.
, vol.5
, pp. 27-31
-
-
Lee, T.Y.1
Kim, M.D.2
Kim, K.Y.3
Park, K.M.4
Ryu, Y.W.5
Seo, J.H.6
-
15
-
-
63949086729
-
Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization
-
Madhavan A., Tamalampudi S., Srivastava A., Fukuda H., Bisaria V., Kondo A. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl. Microbiol. Biotechnol. 2009, 82:1037-1047.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 1037-1047
-
-
Madhavan, A.1
Tamalampudi, S.2
Srivastava, A.3
Fukuda, H.4
Bisaria, V.5
Kondo, A.6
-
16
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
-
Matsushika A., Inoue H., Kodaki T., Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 2009, 84:37-53.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
17
-
-
41549099536
-
+-dependent xylitol dehydrogenase, and xylulokinase
-
+-dependent xylitol dehydrogenase, and xylulokinase. J. Biosci. Bioeng. 2008, 105:296-299.
-
(2008)
J. Biosci. Bioeng.
, vol.105
, pp. 296-299
-
-
Matsushika, A.1
Watanabe, S.2
Kodaki, T.3
Makino, K.4
Sawayama, S.5
-
18
-
-
42449145157
-
Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
-
Petschacher B., Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7:9.
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 9
-
-
Petschacher, B.1
Nidetzky, B.2
-
19
-
-
0037623814
-
Hemicellulose bioconversion
-
Saha B. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30:279-291.
-
(2003)
J. Ind. Microbiol. Biotechnol.
, vol.30
, pp. 279-291
-
-
Saha, B.1
-
20
-
-
2442684544
-
Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
-
Sonderegger M., Schumperli M., Sauer U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70:2892-2897.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 2892-2897
-
-
Sonderegger, M.1
Schumperli, M.2
Sauer, U.3
-
21
-
-
0034878314
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
-
Toivari M.H., Aristidou A., Ruohonen L., Penttilä M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 2001, 3:236-249.
-
(2001)
Metab. Eng.
, vol.3
, pp. 236-249
-
-
Toivari, M.H.1
Aristidou, A.2
Ruohonen, L.3
Penttilä, M.4
-
22
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
-
Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab. Eng. 2008, 10:360-369.
-
(2008)
Metab. Eng.
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
23
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
-
Walfridsson M., Hallborn J., Penttila M., Keranen S., Hahn-Hagerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 1995, 61:4184-4190.
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttila, M.3
Keranen, S.4
Hahn-Hagerdal, B.5
-
24
-
-
34948882785
-
Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
-
Watanabe S., Abu Saleh A., Pack S.P., Annaluru N., Kodaki T., Makino K. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 2007, 153:3044-3054.
-
(2007)
Microbiology
, vol.153
, pp. 3044-3054
-
-
Watanabe, S.1
Abu Saleh, A.2
Pack, S.P.3
Annaluru, N.4
Kodaki, T.5
Makino, K.6
-
25
-
-
0028953195
-
Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis
-
Zhang M., Eddy C., Deanda K., Finkelstein M., Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 1995, 267:240-243.
-
(1995)
Science
, vol.267
, pp. 240-243
-
-
Zhang, M.1
Eddy, C.2
Deanda, K.3
Finkelstein, M.4
Picataggio, S.5
|