메뉴 건너뛰기




Volumn 9, Issue 9, 2016, Pages 4374-4388

A Dissimilarity-Weighted Sparse Self-Representation Method for Band Selection in Hyperspectral Imagery Classification

Author keywords

Band selection; classification; dissimilarity weighted sparse self representation (DWSSR); hyperspectral imagery (HSI)

Indexed keywords

ENCODING (SYMBOLS); SPECTROSCOPY;

EID: 84963575156     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2539981     Document Type: Article
Times cited : (78)

References (57)
  • 2
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 3
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , pp. S110-S122
    • Plaza, A.1
  • 4
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Jan.
    • G. Camps-Valls, D. Tuia, L. Bruzzone, and J. Atli Benediktsson, "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45-54, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Atli Benediktsson, J.4
  • 5
    • 84920193014 scopus 로고    scopus 로고
    • Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake
    • C. Giardino, M. Bresciani, E. Valentini, L. Gasperini, R. Bolpagni, and V. E. Brando, "Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake," Remote Sens. Environ., vol. 157, pp. 48-57, 2015.
    • (2015) Remote Sens. Environ. , vol.157 , pp. 48-57
    • Giardino, C.1    Bresciani, M.2    Valentini, E.3    Gasperini, L.4    Bolpagni, R.5    Brando, V.E.6
  • 6
    • 84943636617 scopus 로고    scopus 로고
    • Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data
    • J. Cui et al., "Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data," Int. J. Appl. Earth Observ. Geoinf., vol. 40, pp. 19-28, 2015.
    • (2015) Int. J. Appl. Earth Observ. Geoinf. , vol.40 , pp. 19-28
    • Cui, J.1
  • 7
    • 84907459019 scopus 로고    scopus 로고
    • Mapping layers of clay in a vertical geological surface using hyperspectral imagery: Variability in parameters of SWIR absorption features under different conditions of illumination
    • R. J. Murphy, S. S. Schneider, and S. T. Monteiro, "Mapping layers of clay in a vertical geological surface using hyperspectral imagery: Variability in parameters of SWIR absorption features under different conditions of illumination," Remote Sens., vol. 6, pp. 9104-9129, 2014.
    • (2014) Remote Sens. , vol.6 , pp. 9104-9129
    • Murphy, R.J.1    Schneider, S.S.2    Monteiro, S.T.3
  • 8
    • 84904480042 scopus 로고    scopus 로고
    • Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery
    • C. Cilia et al., "Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery," Remote Sens., vol. 6, pp. 6549-6565, 2014.
    • (2014) Remote Sens. , vol.6 , pp. 6549-6565
    • Cilia, C.1
  • 9
    • 84905910638 scopus 로고    scopus 로고
    • Effects of different illumination and observation techniques of cultivated soils on their hyperspectral bidirectional measurements under field and laboratory conditions
    • Jun.
    • K. C. Cierniewski et al., "Effects of different illumination and observation techniques of cultivated soils on their hyperspectral bidirectional measurements under field and laboratory conditions," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2525-2530, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2525-2530
    • Cierniewski, K.C.1
  • 10
    • 84905586469 scopus 로고    scopus 로고
    • Hyperspectral modeling of ecological indicators-A new approach for monitoring former military training areas
    • L. Luft, C. Neumann, M. Freude, N. Blaum, and F. Jeltsch, "Hyperspectral modeling of ecological indicators-A new approach for monitoring former military training areas," Ecol. Indic., vol. 46, pp. 264-285, 2014.
    • (2014) Ecol. Indic. , vol.46 , pp. 264-285
    • Luft, L.1    Neumann, C.2    Freude, M.3    Blaum, N.4    Jeltsch, F.5
  • 11
    • 84871736244 scopus 로고    scopus 로고
    • Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction
    • Jan.
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 242-256, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 242-256
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 12
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Mar.
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "On combining multiple features for hyperspectral remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 879-893, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 13
    • 84885022681 scopus 로고    scopus 로고
    • Target detection based on a dynamic subspace
    • B. Du and L. Zhang, "Target detection based on a dynamic subspace," Pattern Recognit., vol. 47, pp. 344-358, 2014.
    • (2014) Pattern Recognit. , vol.47 , pp. 344-358
    • Du, B.1    Zhang, L.2
  • 14
    • 84893068247 scopus 로고    scopus 로고
    • UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification
    • W. Sun et al., "UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification," ISPRS J. Photogramm. Remote Sens., vol. 89, pp. 25-36, 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.89 , pp. 25-36
    • Sun, W.1
  • 15
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding," Pattern Recognit., vol. 48, pp. 3102-3112.
    • Pattern Recognit. , vol.48 , pp. 3102-3112
    • Zhang, L.1    Zhang, Q.2    Zhang, L.3    Tao, D.4    Huang, X.5    Du, B.6
  • 16
    • 4143064738 scopus 로고    scopus 로고
    • Methodology for hyperspectral band selection
    • P. Bajcsy and P. Groves, "Methodology for hyperspectral band selection," Photogramm. Eng. Remote Sens., vol. 70, pp. 793-802, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 793-802
    • Bajcsy, P.1    Groves, P.2
  • 18
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • Oct.
    • B. Guo, S. R. Gunn, R. Damper, and J. Nelson, "Band selection for hyperspectral image classification using mutual information," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522-526, Oct. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.3    Nelson, J.4
  • 19
    • 0033224770 scopus 로고    scopus 로고
    • A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • Nov.
    • C.-I. Chang, Q. Du, T.-L. Sun, and M. L. Althouse, "A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.4
  • 20
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • Jun.
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 21
    • 84921030733 scopus 로고    scopus 로고
    • Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy
    • May
    • J. Feng, L. Jiao, F. Liu, T. Sun, and X. Zhang, "Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2956-2969, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2956-2969
    • Feng, J.1    Jiao, L.2    Liu, F.3    Sun, T.4    Zhang, X.5
  • 22
  • 23
    • 84947033565 scopus 로고    scopus 로고
    • A novel ranking-based clustering approach for hyperspectral band selection
    • Jan.
    • S. Jia, G. Tang, J. Zhu, and Q. Li, "A novel ranking-based clustering approach for hyperspectral band selection," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 88-102, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.1 , pp. 88-102
    • Jia, S.1    Tang, G.2    Zhu, J.3    Li, Q.4
  • 24
    • 85027938432 scopus 로고    scopus 로고
    • Unsupervised hyperspectral image band selection via column subset selection
    • Jul.
    • C.Wang, M. Gong, M. Zhang, and Y. Chan, "Unsupervised hyperspectral image band selection via column subset selection," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 7, pp. 1411-1415, Jul. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.7 , pp. 1411-1415
    • Wang, C.1    Gong, M.2    Zhang, M.3    Chan, Y.4
  • 25
    • 0025199172 scopus 로고
    • Optimum band selection for supervised classification of multispectral data
    • P. Mausel, W. Kramber, and J. Lee, "Optimum band selection for supervised classification of multispectral data," Photogramm. Eng. Remote Sens., vol. 56, pp. 55-60, 1990.
    • (1990) Photogramm. Eng. Remote Sens. , vol.56 , pp. 55-60
    • Mausel, P.1    Kramber, W.2    Lee, J.3
  • 26
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries
    • Jul.
    • N. Keshava, "Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1552-1565, Jul. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.7 , pp. 1552-1565
    • Keshava, N.1
  • 27
    • 84861738326 scopus 로고    scopus 로고
    • Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification
    • Apr.
    • H. Yang, Q. Du, and G. Chen, "Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 544-554, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 544-554
    • Yang, H.1    Du, Q.2    Chen, G.3
  • 28
    • 84879900101 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery: A new approach based on complex networks
    • Sep.
    • W. Xia, B. Wang, and L. Zhang, "Band selection for hyperspectral imagery: A new approach based on complex networks," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1229-1233, Sep. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.5 , pp. 1229-1233
    • Xia, W.1    Wang, B.2    Zhang, L.3
  • 29
    • 84947027877 scopus 로고    scopus 로고
    • Unsupervised band selection based on evolutionary multi-objective optimization for hyperspectral images
    • Jan.
    • M. Gong, M. Zhang, and Y. Yuan, "Unsupervised band selection based on evolutionary multi-objective optimization for hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 554-557, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.1 , pp. 554-557
    • Gong, M.1    Zhang, M.2    Yuan, Y.3
  • 30
    • 84892438392 scopus 로고    scopus 로고
    • Progressive band selection of spectral unmixing for hyperspectral imagery
    • Apr.
    • C.-I. Chang and K.-H. Liu, "Progressive band selection of spectral unmixing for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2002-2017, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2002-2017
    • Chang, C.-I.1    Liu, K.-H.2
  • 31
    • 84947030156 scopus 로고    scopus 로고
    • Unsupervised hyperspectral band selection by dominant set extraction
    • Jan.
    • G. Zhu, Y. Huang, J. Lei, Z. Bi, and F. Xu, "Unsupervised hyperspectral band selection by dominant set extraction," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 227-239, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.1 , pp. 227-239
    • Zhu, G.1    Huang, Y.2    Lei, J.3    Bi, Z.4    Xu, F.5
  • 32
    • 84905900220 scopus 로고    scopus 로고
    • Hyperspectral image visualization using band selection
    • Jun.
    • H. Su, Q. Du, and P. Du, "Hyperspectral image visualization using band selection," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2647-2658, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2647-2658
    • Su, H.1    Du, Q.2    Du, P.3
  • 33
    • 84864305364 scopus 로고    scopus 로고
    • Introduction to compressed sensing
    • M. A. Davenport and M. F. Duarte, "Introduction to compressed sensing," Elect. Eng., vol. 93, no. 1, pp. 1-68, 2011.
    • (2011) Elect. Eng. , vol.93 , Issue.1 , pp. 1-68
    • Davenport, M.A.1    Duarte, M.F.2
  • 34
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 36
    • 84863068805 scopus 로고    scopus 로고
    • Sparse representation based band selection for hyperspectral images
    • Brussels, Belgium, Sep. 11-14
    • S. Li and H. Qi, "Sparse representation based band selection for hyperspectral images," in Proc. 18th IEEE Int. Conf. Image Process. (ICIP'11), Brussels, Belgium, Sep. 11-14, 2011, pp. 2693-2696.
    • (2011) Proc. 18th IEEE Int. Conf. Image Process. (ICIP'11) , pp. 2693-2696
    • Li, S.1    Qi, H.2
  • 37
    • 84947494084 scopus 로고    scopus 로고
    • Band selection using sparse nonnegative matrix factorization with the thresholded earth's mover distance for hyperspectral imagery classification
    • W. Sun,W. Li, J. Li, and Y. M. Lai, "Band selection using sparse nonnegative matrix factorization with the thresholded earth's mover distance for hyperspectral imagery classification," Earth Sci. Informat., vol. 8, no. 4, pp. 907-918, 2015.
    • (2015) Earth Sci. Informat. , vol.8 , Issue.4 , pp. 907-918
    • Sun, W.1    Li, W.2    Li, J.3    Lai, Y.M.4
  • 38
    • 79960071363 scopus 로고    scopus 로고
    • Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization
    • J.-M. Li and Y.-T. Qian, "Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization," J. Zhejiang Univ. Sci. C, vol. 12, pp. 542-549, 2011.
    • (2011) J. Zhejiang Univ. Sci. C , vol.12 , pp. 542-549
    • Li, J.-M.1    Qian, Y.-T.2
  • 41
    • 85027925065 scopus 로고    scopus 로고
    • Band selection using improved sparse subspace clustering for hyperspectral imagery classification
    • Jun.
    • W. Sun, L. Zhang, B. Du, W. Li, and Y. M. Lai, "Band selection using improved sparse subspace clustering for hyperspectral imagery classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2784-2797, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2784-2797
    • Sun, W.1    Zhang, L.2    Du, B.3    Li, W.4    Lai, Y.M.5
  • 42
    • 84919786610 scopus 로고    scopus 로고
    • Band selection for target detection in hyperspectral imagery using sparse CEM
    • X. Geng, K. Sun, and L. Ji, "Band selection for target detection in hyperspectral imagery using sparse CEM," Remote Sens. Lett., vol. 5, pp. 1022-1031, 2014.
    • (2014) Remote Sens. Lett. , vol.5 , pp. 1022-1031
    • Geng, X.1    Sun, K.2    Ji, L.3
  • 43
    • 84906948715 scopus 로고    scopus 로고
    • A new sparsity-based band selection method for target detection of hyperspectral image
    • Feb.
    • K. Sun, X. Geng, and L. Ji, "A new sparsity-based band selection method for target detection of hyperspectral image," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 329-333, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.2 , pp. 329-333
    • Sun, K.1    Geng, X.2    Ji, L.3
  • 44
    • 84906784859 scopus 로고    scopus 로고
    • Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning
    • Jan.
    • Q. Zhang, Y. Tian, Y. Yang, and C. Pan, "Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 261-279, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 261-279
    • Zhang, Q.1    Tian, Y.2    Yang, Y.3    Pan, C.4
  • 45
    • 84866685721 scopus 로고    scopus 로고
    • See all by looking at a few: Sparse modeling for finding representative objects
    • Providence, RI, USA, Jun. 16-21
    • E. Elhamifar, G. Sapiro, and R. Vidal, "See all by looking at a few: Sparse modeling for finding representative objects," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR'12), Providence, RI, USA, Jun. 16-21, 2012, pp. 1600-1607.
    • (2012) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR'12) , pp. 1600-1607
    • Elhamifar, E.1    Sapiro, G.2    Vidal, R.3
  • 46
    • 34547688865 scopus 로고    scopus 로고
    • An interior-point method for largescale L1-regularized logistic regression
    • K. Koh, S.-J. Kim, and S. P. Boyd, "An interior-point method for largescale L1-regularized logistic regression," J. Mach. Learn. Res., vol. 8, pp. 1519-1555, 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1519-1555
    • Koh, K.1    Kim, S.-J.2    Boyd, S.P.3
  • 47
    • 77951546345 scopus 로고    scopus 로고
    • Theoretical and empirical results for recovery from multiple measurements
    • May
    • E. Van Den Berg andM. P. Friedlander, "Theoretical and empirical results for recovery from multiple measurements," IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2516-2527, May 2010.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.5 , pp. 2516-2527
    • Berg Den E.Van1    Friedlander, M.P.2
  • 48
    • 84881596594 scopus 로고    scopus 로고
    • Generalized subspace pursuit for signal recovery from multiple-measurement vectors
    • Shanghai, China, Apr. 7-10
    • J.-M. Feng and C.-H. Lee, "Generalized subspace pursuit for signal recovery from multiple-measurement vectors," in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC'13), Shanghai, China, Apr. 7-10, 2013, pp. 2874-2878.
    • (2013) Proc. IEEE Wireless Commun. Netw. Conf. (WCNC'13) , pp. 2874-2878
    • Feng, J.-M.1    Lee, C.-H.2
  • 49
    • 84919934197 scopus 로고    scopus 로고
    • Extension of sparse randomized kaczmarz algorithm for multiple measurement vectors
    • Stockholm, Sweden, Aug. 24-28
    • H. K. Aggarwal and A. Majumdar, "Extension of sparse randomized kaczmarz algorithm for multiple measurement vectors," in Proc. IEEE 22nd Int. Conf. Pattern Recognit. (ICPR'14), Stockholm, Sweden, Aug. 24-28, 2014, pp. 1014-1019.
    • (2014) Proc. IEEE 22nd Int. Conf. Pattern Recognit. (ICPR'14) , pp. 1014-1019
    • Aggarwal, H.K.1    Majumdar, A.2
  • 50
    • 0033309449 scopus 로고    scopus 로고
    • Spectral information divergence for hyperspectral image analysis
    • Hamburg, Germany, Jun. 28/Jul. 2
    • C.-I. Chang, "Spectral information divergence for hyperspectral image analysis," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS'99), Hamburg, Germany, Jun. 28/Jul. 2, 1999, pp. 509-511.
    • (1999) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS'99) , pp. 509-511
    • Chang, C.-I.1
  • 51
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn., vol. 3, pp. 1-122, 2011.
    • (2011) Found. Trends Mach. Learn. , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 52
    • 84884541998 scopus 로고    scopus 로고
    • Sparse subspace clustering: Algorithm, theory, and applications
    • Nov.
    • E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765-2781, Nov. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.11 , pp. 2765-2781
    • Elhamifar, E.1    Vidal, R.2
  • 54
    • 85027542157 scopus 로고    scopus 로고
    • Exploring representativeness and informativeness for active learning
    • Nov.
    • B. Du, Z. Wang, L. Zhang, L. Zhang, and D. Tao, "Exploring representativeness and informativeness for active learning," IEEE Trans. Cybern., Nov. 2015, doi: 10.1109/TCYB.2015.2496974.
    • (2015) IEEE Trans. Cybern.
    • Du, B.1    Wang, Z.2    Zhang, L.3    Zhang, L.4    Tao, D.5
  • 55
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 57
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Jan.
    • T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.