메뉴 건너뛰기




Volumn 54, Issue 1, 2016, Pages 88-102

A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection

Author keywords

Band selection; density based clustering; hyperspectral imagery

Indexed keywords

ALGORITHMS; CLUSTER ANALYSIS; SPECTROSCOPY;

EID: 84947033565     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2450759     Document Type: Article
Times cited : (330)

References (52)
  • 1
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis, D. Marden, and G. A. Shaw, "Hyperspectral image processing for automatic target detection applications," Lincoln Lab. J., vol. 14, no. 1, pp. 79-115, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 79-115
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 3
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • Sep.
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, no. S1, pp. 110-122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.S1 , pp. 110-122
    • Plaza, A.1
  • 4
    • 84888349041 scopus 로고    scopus 로고
    • Hyperspectral remote sensing data analysis and future challenges
    • Jun.
    • J. M. Bioucas-Dias et al., "Hyperspectral remote sensing data analysis and future challenges," IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6-36, Jun. 2013.
    • (2013) IEEE Geosci. Remote Sens. Mag. , vol.1 , Issue.2 , pp. 6-36
    • Bioucas-Dias, J.M.1
  • 5
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 6
  • 7
    • 64149108290 scopus 로고    scopus 로고
    • Dynamic learning of SMLR for feature selection and classification of hyperspectral data
    • Apr.
    • P. Zhong, P. Zhang, and R. Wang, "Dynamic learning of SMLR for feature selection and classification of hyperspectral data," IEEE Trans. Geosci. Remote Sensing Lett., vol. 5, no. 2, pp. 280-284, Apr. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sensing Lett. , vol.5 , Issue.2 , pp. 280-284
    • Zhong, P.1    Zhang, P.2    Wang, R.3
  • 8
    • 84855590076 scopus 로고    scopus 로고
    • Dimensionality reduction on hyperspectral images: A comparative review based on artificial datas
    • J. Khodr and R. Younes, "Dimensionality reduction on hyperspectral images: A comparative review based on artificial datas," in Proc. 4th CISP, 2011, vol. 4, pp. 1875-1883.
    • (2011) Proc. 4th CISP , vol.4 , pp. 1875-1883
    • Khodr, J.1    Younes, R.2
  • 9
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Jul.
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 10
    • 33846627768 scopus 로고    scopus 로고
    • Unsupervised linear feature-extraction methods and their effects in the classification of high-dimensional data
    • Feb.
    • L. O. Jimenez-Rodrguez, E. Arzuaga-Cruz, and M. Velez-Reyes, "Unsupervised linear feature-extraction methods and their effects in the classification of high-dimensional data," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2, pp. 469-483, Feb. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.2 , pp. 469-483
    • Jimenez-Rodrguez, L.O.1    Arzuaga-Cruz, E.2    Velez-Reyes, M.3
  • 11
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Jul.
    • B. S. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, B.S.1    Bruzzone, L.2
  • 12
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 14
    • 0034314457 scopus 로고    scopus 로고
    • Unsupervised hyperspectral image analysis with projection pursuit
    • Nov.
    • A. Ifarraguerri and C.-I Chang, "Unsupervised hyperspectral image analysis with projection pursuit," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 2529-2538, Nov. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.6 , pp. 2529-2538
    • Ifarraguerri, A.1    Chang, C.-I.2
  • 16
    • 71549134044 scopus 로고    scopus 로고
    • Efficient hierarchical-PCA dimension reduction for hyperspectral imagery
    • A. Agarwal, T. El-Ghazawi, H. El-Askary, and J. Le-Moigne, "Efficient hierarchical-PCA dimension reduction for hyperspectral imagery," in Proc. IEEE ISSPIT, 2007, pp. 353-356.
    • (2007) Proc. IEEE ISSPIT , pp. 353-356
    • Agarwal, A.1    El-Ghazawi, T.2    El-Askary, H.3    Le-Moigne, J.4
  • 17
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
    • Mar.
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas," EURASIP J. Adv. Signal Process., vol. 2009, no. 1, Mar. 2009, Art. ID. 783 194.
    • (2009) EURASIP J. Adv. Signal Process , vol.2009 , Issue.1
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 18
    • 33744719449 scopus 로고    scopus 로고
    • Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
    • Jun.
    • J. Wang and C.-I Chang, "Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1586-1600, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1586-1600
    • Wang, J.1    Chang, C.-I.2
  • 19
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • Jun.
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 20
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • May
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, no. 5, pp. 1027-1061, May 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , Issue.5 , pp. 1027-1061
    • Sugiyama, M.1
  • 21
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • Apr.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 22
    • 72149111677 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • Dec.
    • Y. Qian, F. Yao, and S. Jia, "Band selection for hyperspectral imagery using affinity propagation," IET Comput. Vis., vol. 3, no. 4, pp. 213-222, Dec. 2009.
    • (2009) IET Comput. Vis. , vol.3 , Issue.4 , pp. 213-222
    • Qian, Y.1    Yao, F.2    Jia, S.3
  • 23
    • 79952022416 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification
    • Mar.
    • S. Chen and D. Zhang, "Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 369-373, Mar. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 369-373
    • Chen, S.1    Zhang, D.2
  • 24
    • 84886588953 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction of hyperspectral images via local scaling cut criterion
    • Nov.
    • X. Zhang, Y. He, N. Zhou, and Y. Zheng, "Semisupervised dimensionality reduction of hyperspectral images via local scaling cut criterion," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 6, pp. 1547-1551, Nov. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.6 , pp. 1547-1551
    • Zhang, X.1    He, Y.2    Zhou, N.3    Zheng, Y.4
  • 25
    • 0033224770 scopus 로고    scopus 로고
    • A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • Nov.
    • C.-I Chang, Q. Du, T. L. Sun, and M. L. G. Althouse, "A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.L.3    Althouse, M.L.G.4
  • 26
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 27
    • 79151469566 scopus 로고    scopus 로고
    • Band-subset-based clustering and fusion for hyperspectral imagery classification
    • Feb.
    • Y.-Q. Zhao, L. Zhang, and S. G. Kong, "Band-subset-based clustering and fusion for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 747-756, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 747-756
    • Zhao, Y.-Q.1    Zhang, L.2    Kong, S.G.3
  • 28
    • 84861735806 scopus 로고    scopus 로고
    • Unsupervised band selection for hyperspectral imagery classification without manual band removal
    • Apr.
    • S. Jia, Z. Ji, Y. Qian, and L. Shen, "Unsupervised band selection for hyperspectral imagery classification without manual band removal," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 531-543, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 531-543
    • Jia, S.1    Ji, Z.2    Qian, Y.3    Shen, L.4
  • 30
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • Oct.
    • B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, "Band selection for hyperspectral image classification using mutual information," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522-526, Oct. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 32
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Feb.
    • J. F. Frey and D. Dueck, "Clustering by passing messages between data points," Science, vol. 315, no. 5814, pp. 972-976, Feb. 2007.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, J.F.1    Dueck, D.2
  • 33
    • 84903289127 scopus 로고    scopus 로고
    • Clustering by fast search and find of density peaks
    • Jun.
    • A. Rodriguez and A. Laio, "Clustering by fast search and find of density peaks," Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 2014.
    • (2014) Science , vol.344 , Issue.6191 , pp. 1492-1496
    • Rodriguez, A.1    Laio, A.2
  • 35
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • Jan.
    • K. Fukunaga and L. Hostetler, "The estimation of the gradient of a density function, with applications in pattern recognition," IEEE Trans. Inf. Theory, vol. IT-21, no. 1, pp. 32-40, Jan. 1975.
    • (1975) IEEE Trans. Inf. Theory , vol.IT-21 , Issue.1 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.2
  • 37
    • 77958020335 scopus 로고    scopus 로고
    • Improvement of classification for hyperspectral images based on tensor modeling
    • Oct.
    • S. Bourennane, C. Fossati, and A. Cailly, "Improvement of classification for hyperspectral images based on tensor modeling," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 801-805, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 801-805
    • Bourennane, S.1    Fossati, C.2    Cailly, A.3
  • 39
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning
    • Jan.
    • D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, "Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1    Prasad, S.2    Crawford, M.M.3    Ersoy, O.4
  • 41
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. 2th ICKDDM, 1996, pp. 226-231.
    • (1996) Proc. 2th ICKDDM , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 44
    • 8344285779 scopus 로고    scopus 로고
    • Dependence, correlation and gaussianity in independent component analysis
    • J.-F. Cardoso, "Dependence, correlation and Gaussianity in independent component analysis," J. Mach. Learn. Res., vol. 4, pp. 1177-1203, 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 1177-1203
    • Cardoso, J.-F.1
  • 47
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jun.
    • A. K. Jain, "Data clustering: 50 years beyond k-means," Pattern Recognit. Lett., vol. 31, no. 8, pp. 651-666, Jun. 2010.
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 49
    • 67549146778 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • S. Jia, Y. Qian, and Z. Ji, "Band selection for hyperspectral imagery using affinity propagation," in Proc. DICTA, 2008, pp. 137-141.
    • (2008) Proc. DICTA , pp. 137-141
    • Jia, S.1    Qian, Y.2    Ji, Z.3
  • 50
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Aug.
    • Y. Cheng, "Mean shift, mode seeking, and clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 8, pp. 790-799, Aug. 1995.
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell. , vol.17 , Issue.8 , pp. 790-799
    • Cheng, Y.1
  • 52
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar.
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.