메뉴 건너뛰기




Volumn 54, Issue 1, 2016, Pages 227-239

Unsupervised Hyperspectral Band Selection by Dominant Set Extraction

Author keywords

Band selection; dominant set; hyperspectral imagery; image representation; remote sensing

Indexed keywords

SPECTROSCOPY;

EID: 84947030156     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2453362     Document Type: Article
Times cited : (96)

References (50)
  • 1
    • 75449105199 scopus 로고    scopus 로고
    • A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid Venice lagoon waters
    • Apr.
    • F. Santini, L. Alberotanza, R. M. Cavalli, and S. Pignatti, "A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid Venice lagoon waters," Remote Sens. Environ., vol. 114, no. 4, pp. 887-898, Apr. 2010.
    • (2010) Remote Sens. Environ. , vol.114 , Issue.4 , pp. 887-898
    • Santini, F.1    Alberotanza, L.2    Cavalli, R.M.3    Pignatti, S.4
  • 2
    • 84871790849 scopus 로고    scopus 로고
    • Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery
    • Jan.
    • B. Luo, C. Yang, J. Chanussot, and L. Zhang, "Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 162-173, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 162-173
    • Luo, B.1    Yang, C.2    Chanussot, J.3    Zhang, L.4
  • 3
    • 84864414932 scopus 로고    scopus 로고
    • Multi-and hyperspectral geologic remote sensing: A review
    • Feb.
    • F. D. Van der Meer et al., "Multi-and hyperspectral geologic remote sensing: A review," Int. J. Appl. Earth Observ. Geoinf., vol. 14, no. 1, pp. 112-128, Feb. 2012.
    • (2012) Int. J. Appl. Earth Observ. Geoinf. , vol.14 , Issue.1 , pp. 112-128
    • Meer Der Van, F.D.1
  • 4
    • 58149129096 scopus 로고    scopus 로고
    • On the impact of atmospheric correction on lossy compression of multispectral and hyperspectral imagery
    • Jan.
    • Q. Du, J. E. Fowler, andW. Zhu, "On the impact of atmospheric correction on lossy compression of multispectral and hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 130-132, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 130-132
    • Du, Q.1    Fowler, J.E.2    Zhu, W.3
  • 5
    • 78049263400 scopus 로고    scopus 로고
    • A BOI-preserving-based compression method for hyperspectral images
    • Nov.
    • H. Chen, Y. Zhang, J. Zhang, and Y. Chen, "A BOI-preserving-based compression method for hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3913-3923, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 3913-3923
    • Chen, H.1    Zhang, Y.2    Zhang, J.3    Chen, Y.4
  • 6
    • 36749083452 scopus 로고    scopus 로고
    • Rank estimation and redundancy reduction of high-dimensional noisy signals with preservation of rare vectors
    • Dec.
    • O. Kuybeda, D. Malah, and M. Barzohar, "Rank estimation and redundancy reduction of high-dimensional noisy signals with preservation of rare vectors," IEEE Trans. Signal Process., vol. 55, no. 12, pp. 5579-5592, Dec. 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.12 , pp. 5579-5592
    • Kuybeda, O.1    Malah, D.2    Barzohar, M.3
  • 7
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in highdimensional space: Geometrical, statistical, and asymptotical properties of multivariate data
    • Feb.
    • L. O. Jimenez, and D. A. Landgrebe, "Supervised classification in highdimensional space: Geometrical, statistical, and asymptotical properties of multivariate data," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 28, no. 1, pp. 39-54, Feb. 1998.
    • (1998) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.28 , Issue.1 , pp. 39-54
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 8
    • 18844429782 scopus 로고    scopus 로고
    • On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
    • Apr.
    • M. D. Farrell and R. M. Mersereau, "On the impact of PCA dimension reduction for hyperspectral detection of difficult targets," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 192-195
    • Farrell, M.D.1    Mersereau, R.M.2
  • 9
    • 84858078312 scopus 로고    scopus 로고
    • Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles
    • May
    • G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, "Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 447-451, May 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 447-451
    • Licciardi, G.1    Marpu, P.R.2    Chanussot, J.3    Benediktsson, J.A.4
  • 11
    • 84871993453 scopus 로고    scopus 로고
    • Semisupervised local discriminant analysis for feature extraction in hyperspectral images
    • Jan
    • W. Liao, A. Pizurica, P. Scheunders, W. Philips, and Y. Pi, "Semisupervised local discriminant analysis for feature extraction in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 184-198, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 184-198
    • Liao, W.1    Pizurica, A.2    Scheunders, P.3    Philips, W.4    Pi, Y.5
  • 12
    • 85010496568 scopus 로고    scopus 로고
    • Filtering high-resolution hyperspectral imagery in a maximum noise fraction transform domain using wavelet-based de-striping
    • Mar.
    • R. Pande-Chhetri and A. Abd-Elrahman, "Filtering high-resolution hyperspectral imagery in a maximum noise fraction transform domain using wavelet-based de-striping," Int. J. Remote Sens., vol. 34, no. 6, pp. 2216-2235, Mar. 2013.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.6 , pp. 2216-2235
    • Pande-Chhetri, R.1    Abd-Elrahman, A.2
  • 13
    • 84861735806 scopus 로고    scopus 로고
    • Unsupervised band selection for hyperspectral imagery classification without manual band removal
    • Apr.
    • S. Jia, Z. Ji, Y. Qian, and L. Shen, "Unsupervised band selection for hyperspectral imagery classification without manual band removal," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 531-543, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 531-543
    • Jia, S.1    Ji, Z.2    Qian, Y.3    Shen, L.4
  • 14
    • 84902104255 scopus 로고    scopus 로고
    • A fast volume-gradient-based band selection method for hyperspectral image
    • Nov.
    • X. Geng, K. Sun, L. Ji, and Y. Zhao, "A fast volume-gradient-based band selection method for hyperspectral image," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 7111-7119, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 7111-7119
    • Geng, X.1    Sun, K.2    Ji, L.3    Zhao, Y.4
  • 16
    • 36348942491 scopus 로고    scopus 로고
    • Clusteringbased hyperspectral band selection using information measures
    • Dec.
    • A. M. Usó, F. Pla, J. M. Sotoca, and P. Garciá-Sevilla, "Clusteringbased hyperspectral band selection using information measures," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4158-4171, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 4158-4171
    • Usó, A.M.1    Pla, F.2    Sotoca, J.M.3    Garciá-Sevilla, P.4
  • 17
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervised hyperspectral band selection
    • Jan.
    • H. Yang, Q. Du, H. Su, and Y. Sheng, "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 138-142, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1    Du, Q.2    Su, H.3    Sheng, Y.4
  • 18
    • 84867975740 scopus 로고    scopus 로고
    • A new dimensionality reduction algorithm for hyperspectral image using evolutionary strategy
    • Nov.
    • J. Yin, Y. Wang, and J. Hu, "A new dimensionality reduction algorithm for hyperspectral image using evolutionary strategy," IEEE Trans. Ind. Informat., vol. 8, no. 4, pp. 935-943, Nov. 2012.
    • (2012) IEEE Trans. Ind. Informat. , vol.8 , Issue.4 , pp. 935-943
    • Yin, J.1    Wang, Y.2    Hu, J.3
  • 19
    • 36349016757 scopus 로고    scopus 로고
    • Dimensionality reduction based on clonal selection for hyperspectral imagery
    • Dec.
    • L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, "Dimensionality reduction based on clonal selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4172-4186, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 4172-4186
    • Zhang, L.1    Zhong, Y.2    Huang, B.3    Gong, J.4    Li, P.5
  • 20
    • 84896315238 scopus 로고    scopus 로고
    • Feature selection via Cramer's v-test discretization for remote-sensing image classification
    • May
    • B. Wu, L. Zhang, and Y. Zhao, "Feature selection via Cramer's v-test discretization for remote-sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2593-2606, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2593-2606
    • Wu, B.1    Zhang, L.2    Zhao, Y.3
  • 21
    • 85027939668 scopus 로고    scopus 로고
    • Hyperspectral band selection based on rough set
    • Oct.
    • S. Patra, P. Modi, and L. Bruzzone, "Hyperspectral band selection based on rough set," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, pp. 5495-5503, Oct. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.10 , pp. 5495-5503
    • Patra, S.1    Modi, P.2    Bruzzone, L.3
  • 22
    • 84879900101 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery: A new approach based on complex networks
    • Sep.
    • W. Xia, B. Wang, and L. Zhang, "Band selection for hyperspectral imagery: A new approach based on complex networks," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1229-1233, Sep. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.5 , pp. 1229-1233
    • Xia, W.1    Wang, B.2    Zhang, L.3
  • 23
    • 84905900220 scopus 로고    scopus 로고
    • Hyperspectral image visualization using band selection
    • Jun.
    • H. Su, Q. Du, and P. Du, "Hyperspectral image visualization using band selection," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2647-2658, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2647-2658
    • Su, H.1    Du, Q.2    Du, P.3
  • 24
    • 84896388438 scopus 로고    scopus 로고
    • Unsupervised feature selection using geometrical measures in prototype space for hyperspectral imagery
    • Jul.
    • M. Ghamary Asl, M. R. Mobasheri, and B. Mojaradi, "Unsupervised feature selection using geometrical measures in prototype space for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 3774-3787, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.7 , pp. 3774-3787
    • Ghamary Asl, M.1    Mobasheri, M.R.2    Mojaradi, B.3
  • 25
    • 82155197171 scopus 로고    scopus 로고
    • A constrained band selection method based on information measures for spectral image color visualization
    • Dec.
    • S. Le Moan, A. Mansouri, Y. Voisin, and J. Y. Hardeberg, "A constrained band selection method based on information measures for spectral image color visualization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 5104-5115, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 5104-5115
    • Le Moan, S.1    Mansouri, A.2    Voisin, Y.3    Hardeberg, J.Y.4
  • 26
    • 84892438392 scopus 로고    scopus 로고
    • Progressive band selection of spectral unmixing for hyperspectral imagery
    • Apr.
    • C.-I. Chang and K.-H. Liu, "Progressive band selection of spectral unmixing for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2002-2017, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2002-2017
    • Chang, C.-I.1    Liu, K.-H.2
  • 27
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 28
    • 33947276658 scopus 로고    scopus 로고
    • Dominant sets and pairwise clustering
    • Jan.
    • M. Pavan and M. Pelillo, "Dominant sets and pairwise clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 167-172, Jan. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.1 , pp. 167-172
    • Pavan, M.1    Pelillo, M.2
  • 29
    • 84878889054 scopus 로고    scopus 로고
    • A simple feature combination method based on dominant sets
    • Mar.
    • J. Hou and M. Pelillo, "A simple feature combination method based on dominant sets," Pattern Recognit., vol. 46, no. 11, pp. 3129-3139, Mar. 2013.
    • (2013) Pattern Recognit. , vol.46 , Issue.11 , pp. 3129-3139
    • Hou, J.1    Pelillo, M.2
  • 30
  • 31
    • 85027919418 scopus 로고    scopus 로고
    • Exemplar component analysis: A fast band selection method for hyperspectral imagery
    • May
    • K. Sun, X. Geng, and L. Ji, "Exemplar component analysis: A fast band selection method for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 998-1002, May 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.5 , pp. 998-1002
    • Sun, K.1    Geng, X.2    Ji, L.3
  • 32
    • 58149107236 scopus 로고    scopus 로고
    • A low-complexity approach for the color display of hyperspectral remote-sensing images using onebit-transform-based band selection
    • Jan.
    • B. Demir, A. Çelebi, and S. Ertürk, "A low-complexity approach for the color display of hyperspectral remote-sensing images using onebit-transform-based band selection," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 97-105, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 97-105
    • Demir, B.1    Çelebi, A.2    Ertürk, S.3
  • 33
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • Jun.
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 34
    • 33846570487 scopus 로고    scopus 로고
    • A novel geometry-based feature-selection technique for hyperspectral imagery
    • Jan.
    • L. Wang, X. Jia, and Y. Zhang, "A novel geometry-based feature-selection technique for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 1, pp. 171-175, Jan. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.1 , pp. 171-175
    • Wang, L.1    Jia, X.2    Zhang, Y.3
  • 35
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Int. Symp. Opt. Sci., Eng., Instrum., 1999, pp. 266-275.
    • (1999) Proc. SPIE Int. Symp. Opt. Sci., Eng., Instrum. , pp. 266-275
    • Winter, M.E.1
  • 36
    • 67651160364 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data via spectral feature extraction
    • Jul.
    • B. Mojaradi, H. Abrishami-Moghaddam, M. J. V. Zoej, and R. P. Duin, "Dimensionality reduction of hyperspectral data via spectral feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2091-2105, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2091-2105
    • Mojaradi, B.1    Abrishami-Moghaddam, H.2    Zoej, M.J.V.3    Duin, R.P.4
  • 37
    • 85027938432 scopus 로고    scopus 로고
    • Unsupervised hyperspectral image band selection via column subset selection
    • Jul.
    • C. Wang, M. Gong, M. Zhang, and Y. Chan, "Unsupervised hyperspectral image band selection via column subset selection," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 7, pp. 1411-1415, Jul. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.7 , pp. 1411-1415
    • Wang, C.1    Gong, M.2    Zhang, M.3    Chan, Y.4
  • 38
    • 84905914071 scopus 로고    scopus 로고
    • A new band selection method for hyperspectral image based on data quality
    • Jun.
    • K. Sun, X. Geng, L. Ji, and Y. Lu, "A new band selection method for hyperspectral image based on data quality," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2697-2703, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2697-2703
    • Sun, K.1    Geng, X.2    Ji, L.3    Lu, Y.4
  • 39
    • 84892590567 scopus 로고    scopus 로고
    • Nature-inspired framework for hyperspectral band selection
    • Apr.
    • R. Y. Nakamura et al., "Nature-inspired framework for hyperspectral band selection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2126-2137, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2126-2137
    • Nakamura, R.Y.1
  • 40
    • 84906307287 scopus 로고    scopus 로고
    • Hyperspectral band selection by multitask sparsity pursuit
    • Feb.
    • Y. Yuan, G. Zhu, and Q. Wang, "Hyperspectral band selection by multitask sparsity pursuit," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 631-644, Feb. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.2 , pp. 631-644
    • Yuan, Y.1    Zhu, G.2    Wang, Q.3
  • 41
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I Chang, and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 42
    • 80054993219 scopus 로고    scopus 로고
    • Progressive band selection for satellite hyperspectral data compression and transmission
    • Jan. 2010
    • K. Fisher and C.-I Chang, "Progressive band selection for satellite hyperspectral data compression and transmission," J. Appl. Remote Sens., vol. 4, no. 1, Jan. 2010, Art. ID. 041770.
    • J. Appl. Remote Sens. , vol.4 , Issue.1
    • Fisher, K.1    Chang, C.-I.2
  • 44
    • 0037247254 scopus 로고    scopus 로고
    • Suboptimal minimum cluster volume cover-based method for measuring fractal dimension
    • C. R. Tolle, T. R. McJunkin, and D. J. Gorsich, "Suboptimal minimum cluster volume cover-based method for measuring fractal dimension," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp. 32-41, 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.1 , pp. 32-41
    • Tolle, C.R.1    McJunkin, T.R.2    Gorsich, D.J.3
  • 45
    • 85156237082 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • B. Kégl, "Intrinsic dimension estimation using packing numbers," in Proc. Adv. Neural Inf. Process. Syst., 2002, pp. 681-688.
    • (2002) Proc. Adv. Neural Inf. Process. Syst. , pp. 681-688
    • Kégl, B.1
  • 46
    • 82155192307 scopus 로고    scopus 로고
    • Fractal-based intrinsic dimension estimation and its application in dimensionality reduction
    • Jan.
    • D. Mo and S. H. Huang, "Fractal-based intrinsic dimension estimation and its application in dimensionality reduction," IEEE Trans. Knowl. Data Eng., vol. 24, no. 1, pp. 59-71, Jan. 2012.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.1 , pp. 59-71
    • Mo, D.1    Huang, S.H.2
  • 47
    • 0142025120 scopus 로고    scopus 로고
    • Data dimensionality estimation methods: A survey
    • Dec.
    • F. Camastra, "Data dimensionality estimation methods: A survey," Pattern Recognit., vol. 36, no. 12, pp. 2945-2954, Dec. 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.12 , pp. 2945-2954
    • Camastra, F.1
  • 48
    • 33947576864 scopus 로고    scopus 로고
    • Band selection in multispectral images by minimization of dependent information
    • Mar.
    • J. M. Sotoca, F. Pla, and J. S. Sánchez, "Band selection in multispectral images by minimization of dependent information," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 2, pp. 258-267, Mar. 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.37 , Issue.2 , pp. 258-267
    • Sotoca, J.M.1    Pla, F.2    Sánchez, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.