메뉴 건너뛰기




Volumn 9088, Issue , 2014, Pages

Band selection in hyperspectral imagery using sparse support vector machines

Author keywords

Band selection; Bootstrap aggregating; Classification; Hyperspectral imagery; Sparse support vector machines; Sparsity

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); REMOTE SENSING; SPECTROSCOPY;

EID: 84906231043     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2063812     Document Type: Conference Paper
Times cited : (30)

References (29)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • Landgrebe, D., "Hyperspectral image data analysis," Signal Processing Magazine, IEEE 19(1), 17-28 (2002). (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 2
    • 77957741951 scopus 로고    scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G. F., "On the mean accuracy of statistical pattern recognizers," IEEE Transactions on Information Theory 14(1), 55-63 (2006).
    • (2006) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 3
  • 4
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries
    • Keshava, N., "Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries," IEEE Transactions on Geoscience and Remote Sensing 42(7), 1552-1565 (2004).
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.7 , pp. 1552-1565
    • Keshava, N.1
  • 5
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • DOI 10.1109/LGRS.2006.878240, 1715309
    • Guo, B. and Gunn, S., "Band selection for hyperspectral image classification using mutual information," IEEE Geoscience and Remote Sensing Letters 3(4), 522-526 (2006). (Pubitemid 44679664)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 8
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi, R. and John, G. H., "Wrappers for feature subset selection," Artificial Intelligence 97(1), 273-324 (1997). (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 9
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • Li, S., Wu, H., Wan, D., and Zhu, J., "An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine," Knowledge-Based Systems 24(1), 40-48 (2011).
    • (2011) Knowledge-Based Systems , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 12
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon, I., Weston, J., Barnhill, S., and Vapnik, V., "Gene selection for cancer classification using support vector machines," Mach. Learn. 46(1-3), 389-422 (2002). (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • Archibald, R. and Fann, G., "Feature selection and classification of hyperspectral images with support vector machines," IEEE Geoscience and Remote Sensing Letters 4(4), 2007-2010 (2007).
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 2007-2010
    • Archibald, R.1    Fann, G.2
  • 14
    • 70449384598 scopus 로고    scopus 로고
    • Feature selection for hyperspectral data based on recursive support vector machines
    • July
    • Zhang, R. andMa, J., "Feature selection for hyperspectral data based on recursive support vector machines," International Journal of Remote Sensing 30, 3669-3677 (July 2009).
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 3669-3677
    • Zhang, R.1    Ma, J.2
  • 17
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection newton method for support vector machine classification
    • Fung, G. and Mangasarian, O., "A feature selection newton method for support vector machine classification," Computational Optimization and Applications 28(2), 185-202 (2004).
    • (2004) Computational Optimization and Applications , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.1    Mangasarian, O.2
  • 19
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., "Bagging predictors," Machine learning 24(2), 123-140 (1996). (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 22
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C., "A tutorial on support vector machines for pattern recognition," Data Mining and Knowledge Discovery 2, 121-167 (1998). (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 26
    • 64149126207 scopus 로고    scopus 로고
    • Hyperspectral band selection and endmember detection using sparsity promoting priors
    • Apr
    • Zare, A. and Gader, P., "Hyperspectral band selection and endmember detection using sparsity promoting priors," IEEE Geoscience and Remote Sensing Letters 5, 256-260 (Apr. 2008).
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , pp. 256-260
    • Zare, A.1    Gader, P.2
  • 28
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., and Tibshirani, R., "Regularization paths for generalized linear models via coordinate descent," Journal of Statistical Software 33(1), 1-22 (2010).
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.