메뉴 건너뛰기




Volumn 12, Issue 7, 2011, Pages 542-549

Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization

Author keywords

Band selection; Clustering; Hyperspectral; Sparse nonnegative matrix factorization

Indexed keywords

BAND SELECTION; CLUSTERING; CLUSTERING METHODS; COEFFICIENT MATRIX; COMPUTATIONAL COSTS; DISTANCE METRICS; HYPERSPECTRAL; HYPERSPECTRAL IMAGERY; LAND-COVER CLASSIFICATION; MATRIX; SPARSE NON-NEGATIVE MATRIX FACTORIZATIONS; SPECTRAL BAND; HYPER-SPECTRAL IMAGERIES; LAND COVER CLASSIFICATION;

EID: 79960071363     PISSN: 18691951     EISSN: 1869196X     Source Type: Journal    
DOI: 10.1631/jzus.C1000304     Document Type: Article
Times cited : (55)

References (24)
  • 1
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • DOI 10.1109/LGRS.2007.905116
    • R. Archibald G. Fann 2007 Feature selection and classification of hyperspectral images, with support vector machines IEEE Geosci. Remote Sens. Lett. 4 4 674 677 10.1109/LGRS.2007.905116 (Pubitemid 47588053)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 2
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • DOI 10.1109/TGRS.2006.880628, 1717732
    • Y. Bazi F. Melgani 2006 Toward an optimal SVM classification system for hyperspectral remote sensing images IEEE Trans. Geosci. Remote Sens. 44 11 3374 3385 10.1109/TGRS.2006.880628 (Pubitemid 44711679)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 3
    • 79960064590 scopus 로고    scopus 로고
    • LIBSVM: a Library for Support Vector Machines
    • Chang, C.C.; Lin, C.J.; 2001. LIBSVM: a Library for Support Vector Machines. Available from http://www.csie.ntu.edu.tw/-cjlin/libsvm/
    • (2001)
    • Chang C., .C.1    Lin C., .J.2
  • 4
    • 0033224770 scopus 로고    scopus 로고
    • Joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • DOI 10.1109/36.803411
    • C.I. Chang Q. Du T.L. Sun M.L.G. Althouse 1999 A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 37 6 2631 2641 10.1109/36.803411 (Pubitemid 30519596)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.G.4
  • 5
    • 33750584880 scopus 로고    scopus 로고
    • Logistic regression for feature selection and soft classification of remote sensing data
    • DOI 10.1109/LGRS.2006.877949, 1715302
    • Q. Cheng P.K. Varshney M.K. Arora 2006 Logistic regression for feature selection and soft classification of remote sensing data IEEE Geosci. Remote Sens. Lett. 3 4 491 494 10.1109/LGRS.2006.877949 (Pubitemid 44679657)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.4 , pp. 491-494
    • Cheng, Q.1    Varshney, P.K.2    Arora, M.K.3
  • 6
    • 33749255098 scopus 로고    scopus 로고
    • On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering
    • Ding, C.; He, X.; Simon, H.D.; 2005. On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering. Proc. SIAM Data Mining Conf.; p.606-610.
    • (2005) Proc. SIAM Data Mining Conf. , pp. 606-610
    • Ding, C.1    He, X.2    Simon H., .D.3
  • 7
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • 10.1111/j.1469-1809.1936.tb02137.x
    • R.A. Fisher 1936 The use of multiple measurements in taxonomic problems Ann. Hum. Genet. 7 2 179 188 10.1111/j.1469-1809.1936.tb02137.x
    • (1936) Ann. Hum. Genet. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 8
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • 1102.68556 10.1162/153244303322753616
    • I. Guyon A. Elisseeff 2003 An introduction to variable and feature selection J. Mach. Learn. Res. 3 7-8 1157 1182 1102.68556 10.1162/ 153244303322753616
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.78 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 9
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P.O. Hoyer 2004 Non-negative matrix factorization with sparseness constraints J. Mach. Learn. Res. 5 1457 1469
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 10
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
    • A. Hyvärinen E. Oja 2000 Independent component analysis: algorithms and applications Neur. Networks 13 4-5 411 430 10.1016/S0893-6080(00)00026-5 (Pubitemid 30447427)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 12
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries
    • 10.1109/TGRS.2004.830549
    • N. Keshava 2004 Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries IEEE Trans. Geosci. Remote Sens. 42 7 1552 1565 10.1109/TGRS.2004.830549
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.7 , pp. 1552-1565
    • Keshava, N.1
  • 13
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • DOI 10.1093/bioinformatics/btm134
    • H. Kim H. Park 2007 Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis Bioinformatics 23 12 1495 1502 10.1093/bioinformatics/btm134 (Pubitemid 47244474)
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 14
    • 77955908608 scopus 로고    scopus 로고
    • Sparse Nonnegative Matrix Factorization for Clustering
    • GTCSE-08-01, Georgia Institute of Technology
    • Kim, J.; Park, H.; 2008. Sparse Nonnegative Matrix Factorization for Clustering. CSE Technical Report, GTCSE-08-01, Georgia Institute of Technology.
    • (2008) CSE Technical Report
    • Kim, J.1    Park, H.2
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • DOI 10.1038/44565
    • D.D. Lee H.S. Seung 1999 Learning the parts of objects by non-negative matrix factorization Nature 401 6755 788 791 10.1038/44565 (Pubitemid 29512513)
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 34547399927 scopus 로고    scopus 로고
    • A support vector domain description approach to supervised classification of remote sensing images
    • DOI 10.1109/TGRS.2007.897425
    • J. Munoz-Mari L. Bruzzone G. Camps-Valls 2007 A support vector domain description approach to supervised classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 45 8 2683 2692 10.1109/TGRS.2007.897425 (Pubitemid 47171196)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.8 , pp. 2683-2692
    • Munoz-Mari, J.1    Bruzzone, L.2    Camps-Valls, G.3
  • 19
    • 20444500972 scopus 로고    scopus 로고
    • A bayesian MRP framework for labeling terrain using hyperspectral imaging
    • DOI 10.1109/TGRS.2005.846865
    • R. Neher A. Srivastava 2005 A Bayesian MRF framework for labeling terrain using hyperspectral imaging IEEE Trans. Geosci. Remote Sens. 43 6 1363 1374 10.1109/TGRS.2005.846865 (Pubitemid 40811945)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1363-1374
    • Neher, R.1    Srivastava, A.2
  • 20
    • 72149111677 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • 10.1049/iet-cvi.2009.0034
    • Y. Qian F. Yao S. Jia 2009 Band selection for hyperspectral imagery using affinity propagation IET Comput. Vis. 3 4 213 222 10.1049/iet-cvi.2009.0034
    • (2009) IET Comput. Vis. , vol.3 , Issue.4 , pp. 213-222
    • Qian, Y.1    Yao, F.2    Jia, S.3
  • 21
    • 25844488029 scopus 로고    scopus 로고
    • Document clustering using nonnegative matrix factorization
    • DOI 10.1016/j.ipm.2004.11.005, PII S0306457304001542
    • F. Shahnaz M.W. Berry V.P. Pauca R.J. Plemmons 2006 Document clustering using nonnegative matrix factorization Inform. Process. Manag. 42 2 373 386 1087.68104 10.1016/j.ipm.2004.11.005 (Pubitemid 41394167)
    • (2006) Information Processing and Management , vol.42 , Issue.2 , pp. 373-386
    • Shahnaz, F.1    Berry, M.W.2    Pauca, V.P.3    Plemmons, R.J.4
  • 22
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • 0850.62538
    • R. Tibshirani 1996 Regression shrinkage and selection via the lasso J. R. Stat. Soc. Ser. B 58 1 267 288 0850.62538
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 23
    • 34548206628 scopus 로고    scopus 로고
    • Variable-number variable-band selection for feature characterization in hyperspectral signatures
    • DOI 10.1109/TGRS.2007.901051
    • S. Wang C.I. Chang 2007 Variable-number variable-band selection for feature characterization in hyperspectral signatures IEEE Trans. Geosci. Remote Sens. 45 9 2979 2992 10.1109/TGRS.2007.901051 (Pubitemid 47331324)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.9 , pp. 2979-2992
    • Wang, S.1    Chang, C.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.