-
1
-
-
35349016235
-
Recognition of microorganisms and activation of the immune response
-
Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449:819-826. http://dx.doi.org/10.1038/nature06246.
-
(2007)
Nature
, vol.449
, pp. 819-826
-
-
Medzhitov, R.1
-
2
-
-
84919818703
-
NOD-like receptors: versatile cytosolic sentinels
-
Motta V, Soares F, Sun T, Philpott DJ. 2015. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev 95:149-178. http://dx.doi.org/10.1152/physrev.00009.2014.
-
(2015)
Physiol Rev
, vol.95
, pp. 149-178
-
-
Motta, V.1
Soares, F.2
Sun, T.3
Philpott, D.J.4
-
3
-
-
77955906264
-
The nuclear factor NF-κB pathway in inflammation
-
Lawrence T. 2009. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. http://dx.doi.org/10.1101/cshperspect.a001651.
-
(2009)
Cold Spring Harb Perspect Biol
, vol.1
-
-
Lawrence, T.1
-
4
-
-
36049033394
-
Signaling to NF-κB by Toll-like receptors
-
Kawai T, Akira S. 2007. Signaling to NF-κB by Toll-like receptors. Trends Mol Med 13:460-469. http://dx.doi.org/10.1016/j.molmed.2007.09.002.
-
(2007)
Trends Mol Med
, vol.13
, pp. 460-469
-
-
Kawai, T.1
Akira, S.2
-
5
-
-
32944462309
-
Anti-immunology: evasion of the host immune system by bacterial and viral pathogens
-
Finlay BB, McFadden G. 2006. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124:767-782. http://dx.doi.org/10.1016/j.cell.2006.01.034.
-
(2006)
Cell
, vol.124
, pp. 767-782
-
-
Finlay, B.B.1
McFadden, G.2
-
6
-
-
33646942975
-
Host-pathogen interactions: a biological rendez-vous of the infectious nonself and danger models?
-
Tournier JN, Quesnel-Hellmann A. 2006. Host-pathogen interactions: a biological rendez-vous of the infectious nonself and danger models? PLoS Pathog 2:e44. http://dx.doi.org/10.1371/journal.ppat.0020044.
-
(2006)
PLoS Pathog
, vol.2
-
-
Tournier, J.N.1
Quesnel-Hellmann, A.2
-
7
-
-
26844521751
-
Type III secretion: more systems than you think
-
Troisfontaines P, Cornelis GR. 2005. Type III secretion: more systems than you think. Physiology (Bethesda) 20:326-339. http://dx.doi.org/10.1152/physiol.00011.2005.
-
(2005)
Physiology (Bethesda)
, vol.20
, pp. 326-339
-
-
Troisfontaines, P.1
Cornelis, G.R.2
-
8
-
-
84881029343
-
Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors
-
Raymond B, Young JC, Pallett M, Endres RG, Clements A, Frankel G. 2013. Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol 21:430-441. http://dx.doi.org/10.1016/j.tim.2013.06.008.
-
(2013)
Trends Microbiol
, vol.21
, pp. 430-441
-
-
Raymond, B.1
Young, J.C.2
Pallett, M.3
Endres, R.G.4
Clements, A.5
Frankel, G.6
-
9
-
-
84857546470
-
Beyond pattern recognition: five immune checkpoints for scaling the microbial threat
-
Blander JM, Sander LE. 2012. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol 12:215-225. http://dx.doi.org/10.1038/nri3167.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 215-225
-
-
Blander, J.M.1
Sander, L.E.2
-
10
-
-
67651091732
-
Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system
-
Vance RE, Isberg RR, Portnoy DA. 2009. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6:10-21. http://dx.doi.org/10.1016/j.chom.2009.06.007.
-
(2009)
Cell Host Microbe
, vol.6
, pp. 10-21
-
-
Vance, R.E.1
Isberg, R.R.2
Portnoy, D.A.3
-
11
-
-
84892746507
-
Caspase-1: the inflammasome and beyond
-
Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD. 2014. Caspase-1: the inflammasome and beyond. Innate Immun 20:115-125. http://dx.doi.org/10.1177/1753425913484374.
-
(2014)
Innate Immun
, vol.20
, pp. 115-125
-
-
Sollberger, G.1
Strittmatter, G.E.2
Garstkiewicz, M.3
Sand, J.4
Beer, H.D.5
-
12
-
-
84931567250
-
The inflammasome: learning from bacterial evasion strategies
-
Shin S, Brodsky IE. 2015. The inflammasome: learning from bacterial evasion strategies. Semin Immunol 27:102-110. http://dx.doi.org/10.1016/j.smim.2015.03.006.
-
(2015)
Semin Immunol
, vol.27
, pp. 102-110
-
-
Shin, S.1
Brodsky, I.E.2
-
13
-
-
84875542536
-
Recognition of bacteria by inflammasomes
-
von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. 2013. Recognition of bacteria by inflammasomes. Annu Rev Immunol 31:73-106. http://dx.doi.org/10.1146/annurev-immunol-032712-095944.
-
(2013)
Annu Rev Immunol
, vol.31
, pp. 73-106
-
-
von Moltke, J.1
Ayres, J.S.2
Kofoed, E.M.3
Chavarria-Smith, J.4
Vance, R.E.5
-
14
-
-
84875813739
-
Inflammasomes and host defenses against bacterial infections
-
Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E. 2013. Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol 16:23-31. http://dx.doi.org/10.1016/j.mib.2012.11.008.
-
(2013)
Curr Opin Microbiol
, vol.16
, pp. 23-31
-
-
Vladimer, G.I.1
Marty-Roix, R.2
Ghosh, S.3
Weng, D.4
Lien, E.5
-
15
-
-
84858677223
-
Sensing and reacting to microbes through the inflammasomes
-
Franchi L, Munoz-Planillo R, Nunez G. 2012. Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13:325-332. http://dx.doi.org/10.1038/ni.2231.
-
(2012)
Nat Immunol
, vol.13
, pp. 325-332
-
-
Franchi, L.1
Munoz-Planillo, R.2
Nunez, G.3
-
16
-
-
80052687210
-
Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation
-
Bergsbaken T, Fink SL, den Hartigh AB, Loomis WP, Cookson BT. 2011. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J Immunol 187:2748-2754. http://dx.doi.org/10.4049/jimmunol.1100477.
-
(2011)
J Immunol
, vol.187
, pp. 2748-2754
-
-
Bergsbaken, T.1
Fink, S.L.2
den Hartigh, A.B.3
Loomis, W.P.4
Cookson, B.T.5
-
17
-
-
84872451259
-
The CARD plays a critical role in ASC foci formation and inflammasome signalling
-
Proell M, Gerlic M, Mace PD, Reed JC, Riedl SJ. 2013. The CARD plays a critical role in ASC foci formation and inflammasome signalling. Biochem J 449:613-621. http://dx.doi.org/10.1042/BJ20121198.
-
(2013)
Biochem J
, vol.449
, pp. 613-621
-
-
Proell, M.1
Gerlic, M.2
Mace, P.D.3
Reed, J.C.4
Riedl, S.J.5
-
18
-
-
73649086203
-
Kinetic properties of ASC protein aggregation in epithelial cells
-
Cheng J, Waite AL, Tkaczyk ER, Ke K, Richards N, Hunt AJ, Gumucio DL. 2010. Kinetic properties of ASC protein aggregation in epithelial cells. J Cell Physiol 222:738-747. http://dx.doi.org/10.1002/jcp.22005.
-
(2010)
J Cell Physiol
, vol.222
, pp. 738-747
-
-
Cheng, J.1
Waite, A.L.2
Tkaczyk, E.R.3
Ke, K.4
Richards, N.5
Hunt, A.J.6
Gumucio, D.L.7
-
19
-
-
34548031870
-
The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation
-
Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES. 2007. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590-1604. http://dx.doi.org/10.1038/sj.cdd.4402194.
-
(2007)
Cell Death Differ
, vol.14
, pp. 1590-1604
-
-
Fernandes-Alnemri, T.1
Wu, J.2
Yu, J.W.3
Datta, P.4
Miller, B.5
Jankowski, W.6
Rosenberg, S.7
Zhang, J.8
Alnemri, E.S.9
-
20
-
-
84898635026
-
Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function
-
Ghonime MG, Shamaa OR, Das S, Eldomany RA, Fernandes-Alnemri T, Alnemri ES, Gavrilin MA, Wewers MD. 2014. Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function. J Immunol 192:3881-3888. http://dx.doi.org/10.4049/jimmunol.1301974.
-
(2014)
J Immunol
, vol.192
, pp. 3881-3888
-
-
Ghonime, M.G.1
Shamaa, O.R.2
Das, S.3
Eldomany, R.A.4
Fernandes-Alnemri, T.5
Alnemri, E.S.6
Gavrilin, M.A.7
Wewers, M.D.8
-
21
-
-
84867770402
-
Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
-
Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. 2012. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 287:36617-36622. http://dx.doi.org/10.1074/jbc.M112.407130.
-
(2012)
J Biol Chem
, vol.287
, pp. 36617-36622
-
-
Juliana, C.1
Fernandes-Alnemri, T.2
Kang, S.3
Farias, A.4
Qin, F.5
Alnemri, E.S.6
-
22
-
-
40849116186
-
Biochemical functions of Yersinia type III effectors
-
Shao F. 2008. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 11:21-29. http://dx.doi.org/10.1016/j.mib.2008.01.005.
-
(2008)
Curr Opin Microbiol
, vol.11
, pp. 21-29
-
-
Shao, F.1
-
23
-
-
84884704592
-
Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors
-
Bliska JB, Wang X, Viboud GI, Brodsky IE. 2013. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors. Cell Microbiol 15:1622-1631. http://dx.doi.org/10.1111/cmi.12164.
-
(2013)
Cell Microbiol
, vol.15
, pp. 1622-1631
-
-
Bliska, J.B.1
Wang, X.2
Viboud, G.I.3
Brodsky, I.E.4
-
25
-
-
25444476788
-
Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis
-
Viboud GI, Bliska JB. 2005. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59: 69-89. http://dx.doi.org/10.1146/annurev.micro.59.030804.121320.
-
(2005)
Annu Rev Microbiol
, vol.59
, pp. 69-89
-
-
Viboud, G.I.1
Bliska, J.B.2
-
26
-
-
42949122126
-
Interaction between Yersinia pestis and the host immune system
-
Li B, Yang R. 2008. Interaction between Yersinia pestis and the host immune system. Infect Immun 76:1804-1811. http://dx.doi.org/10.1128/IAI.01517-07.
-
(2008)
Infect Immun
, vol.76
, pp. 1804-1811
-
-
Li, B.1
Yang, R.2
-
27
-
-
13444254004
-
Functions of the Yersinia effector proteins in inhibiting host immune responses
-
Navarro L, Alto NM, Dixon JE. 2005. Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr Opin Microbiol 8:21-27 http://dx.doi.org/10.1016/j.mib.2004.12.014.
-
(2005)
Curr Opin Microbiol
, vol.8
, pp. 21-27
-
-
Navarro, L.1
Alto, N.M.2
Dixon, J.E.3
-
28
-
-
84891484173
-
The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses
-
Plano GV, Schesser K. 2013. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 57:237-245. http://dx.doi.org/10.1007/s12026-013-8454-3.
-
(2013)
Immunol Res
, vol.57
, pp. 237-245
-
-
Plano, G.V.1
Schesser, K.2
-
29
-
-
51949097139
-
Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ
-
Lilo S, Zheng Y, Bliska JB. 2008. Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infect Immun 76:3911-3923. http://dx.doi.org/10.1128/IAI.01695-07.
-
(2008)
Infect Immun
, vol.76
, pp. 3911-3923
-
-
Lilo, S.1
Zheng, Y.2
Bliska, J.B.3
-
30
-
-
84924217271
-
Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD
-
Zwack EE, Snyder AG, Wynosky-Dolfi MA, Ruthel G, Philip NH, Marketon MM, Francis MS, Bliska JB, Brodsky IE. 2015. Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD. mBio 6:e02095-14 http://dx.doi.org/10.1128/mBio.02095-14.
-
(2015)
mBio
, vol.6
-
-
Zwack, E.E.1
Snyder, A.G.2
Wynosky-Dolfi, M.A.3
Ruthel, G.4
Philip, N.H.5
Marketon, M.M.6
Francis, M.S.7
Bliska, J.B.8
Brodsky, I.E.9
-
31
-
-
84908305287
-
IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM
-
Chung LK, Philip NH, Schmidt VA, Koller A, Strowig T, Flavell RA, Brodsky IE, Bliska JB. 2014. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM. mBio 5:e01402-14. http://dx.doi.org/10.1128/mBio.01402-14.
-
(2014)
mBio
, vol.5
-
-
Chung, L.K.1
Philip, N.H.2
Schmidt, V.A.3
Koller, A.4
Strowig, T.5
Flavell, R.A.6
Brodsky, I.E.7
Bliska, J.B.8
-
32
-
-
2942537824
-
Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta
-
Schotte P, Denecker G, Van Den Broeke A, Vandenabeele P, Cornelis GR, Beyaert R. 2004. Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta. J Biol Chem 279:25134-25142. http://dx.doi.org/10.1074/jbc.M401245200.
-
(2004)
J Biol Chem
, vol.279
, pp. 25134-25142
-
-
Schotte, P.1
Denecker, G.2
Van Den Broeke, A.3
Vandenabeele, P.4
Cornelis, G.R.5
Beyaert, R.6
-
33
-
-
77953562208
-
A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system
-
Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, Bliska JB, Medzhitov R. 2010. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7:376-387. http://dx.doi.org/10.1016/j.chom.2010.04.009.
-
(2010)
Cell Host Microbe
, vol.7
, pp. 376-387
-
-
Brodsky, I.E.1
Palm, N.W.2
Sadanand, S.3
Ryndak, M.B.4
Sutterwala, F.S.5
Flavell, R.A.6
Bliska, J.B.7
Medzhitov, R.8
-
34
-
-
79955776183
-
A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages
-
Zheng Y, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, Marcu KB, Bliska JB. 2011. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PLoS Pathog 7:e1002026. http://dx.doi.org/10.1371/journal.ppat.1002026.
-
(2011)
PLoS Pathog
, vol.7
-
-
Zheng, Y.1
Lilo, S.2
Brodsky, I.E.3
Zhang, Y.4
Medzhitov, R.5
Marcu, K.B.6
Bliska, J.B.7
-
35
-
-
84860001887
-
Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction
-
Meinzer U, Barreau F, Esmiol-Welterlin S, Jung C, Villard C, Leger T, Ben-Mkaddem S, Berrebi D, Dussaillant M, Alnabhani Z, Roy M, Bonacorsi S, Wolf-Watz H, Perroy J, Ollendorff V, Hugot JP. 2012. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe 11:337-351. http://dx.doi.org/10.1016/j.chom.2012.02.009.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 337-351
-
-
Meinzer, U.1
Barreau, F.2
Esmiol-Welterlin, S.3
Jung, C.4
Villard, C.5
Leger, T.6
Ben-Mkaddem, S.7
Berrebi, D.8
Dussaillant, M.9
Alnabhani, Z.10
Roy, M.11
Bonacorsi, S.12
Wolf-Watz, H.13
Perroy, J.14
Ollendorff, V.15
Hugot, J.P.16
-
36
-
-
84871001488
-
The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing
-
LaRock CN, Cookson BT. 2012. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12:799-805. http://dx.doi.org/10.1016/j.chom.2012.10.020.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 799-805
-
-
LaRock, C.N.1
Cookson, B.T.2
-
37
-
-
84860354862
-
YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense
-
Zheng Y, Lilo S, Mena P, Bliska JB. 2012. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense. PLoS One 7:e36019. http://dx.doi.org/10.1371/journal.pone.0036019.
-
(2012)
PLoS One
, vol.7
-
-
Zheng, Y.1
Lilo, S.2
Mena, P.3
Bliska, J.B.4
-
38
-
-
37349046671
-
Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis
-
Bergsbaken T, Cookson BT. 2007. Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161. http://dx.doi.org/10.1371/journal.ppat.0030161.
-
(2007)
PLoS Pathog
, vol.3
-
-
Bergsbaken, T.1
Cookson, B.T.2
-
39
-
-
33845480946
-
Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling
-
Mittal R, Peak-Chew SY, McMahon HT. 2006. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc Natl Acad Sci U S A 103:18574-18579. http://dx.doi.org/10.1073/pnas.0608995103.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 18574-18579
-
-
Mittal, R.1
Peak-Chew, S.Y.2
McMahon, H.T.3
-
40
-
-
77953782586
-
The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate
-
Mittal R, Peak-Chew SY, Sade RS, Vallis Y, McMahon HT. 2010. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J Biol Chem 285:19927-19934. http://dx.doi.org/10.1074/jbc.M110.126581.
-
(2010)
J Biol Chem
, vol.285
, pp. 19927-19934
-
-
Mittal, R.1
Peak-Chew, S.Y.2
Sade, R.S.3
Vallis, Y.4
McMahon, H.T.5
-
41
-
-
84864518388
-
Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling
-
Paquette N, Conlon J, Sweet C, Rus F, Wilson L, Pereira A, Rosadini CV, Goutagny N, Weber AN, Lane WS, Shaffer SA, Maniatis S, Fitzgerald KA, Stuart L, Silverman N. 2012. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc Natl Acad Sci U S A 109:12710-12715. http://dx.doi.org/10.1073/pnas.1008203109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 12710-12715
-
-
Paquette, N.1
Conlon, J.2
Sweet, C.3
Rus, F.4
Wilson, L.5
Pereira, A.6
Rosadini, C.V.7
Goutagny, N.8
Weber, A.N.9
Lane, W.S.10
Shaffer, S.A.11
Maniatis, S.12
Fitzgerald, K.A.13
Stuart, L.14
Silverman, N.15
-
42
-
-
33744457909
-
Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation
-
Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K. 2006. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211-1214. http://dx.doi.org/10.1126/science.1126867.
-
(2006)
Science
, vol.312
, pp. 1211-1214
-
-
Mukherjee, S.1
Keitany, G.2
Li, Y.3
Wang, Y.4
Ball, H.L.5
Goldsmith, E.J.6
Orth, K.7
-
43
-
-
84881027178
-
Cell death programs in Yersinia immunity and pathogenesis
-
Philip NH, Brodsky IE. 2012. Cell death programs in Yersinia immunity and pathogenesis. Front Cell Infect Microbiol 2:149. http://dx.doi.org/10.3389/fcimb.2012.00149.
-
(2012)
Front Cell Infect Microbiol
, vol.2
, pp. 149
-
-
Philip, N.H.1
Brodsky, I.E.2
-
44
-
-
84901020402
-
Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling
-
Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA, Zwack EE, Hu B, Fitzgerald L, Mauldin EA, Copenhaver AM, Shin S, Wei L, Parker M, Zhang J, Oberst A, Green DR, Brodsky IE. 2014. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc Natl Acad Sci U S A 111:7385-7390. http://dx.doi.org/10.1073/pnas.1403252111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 7385-7390
-
-
Philip, N.H.1
Dillon, C.P.2
Snyder, A.G.3
Fitzgerald, P.4
Wynosky-Dolfi, M.A.5
Zwack, E.E.6
Hu, B.7
Fitzgerald, L.8
Mauldin, E.A.9
Copenhaver, A.M.10
Shin, S.11
Wei, L.12
Parker, M.13
Zhang, J.14
Oberst, A.15
Green, D.R.16
Brodsky, I.E.17
-
45
-
-
84901045151
-
Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death
-
Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, Harris PA, Bertin J, Gough PJ, Shayakhmetov DM, Goguen JD, Fitzgerald KA, Silverman N, Lien E. 2014. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci U S A 111: 7391-7396. http://dx.doi.org/10.1073/pnas.1403477111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 7391-7396
-
-
Weng, D.1
Marty-Roix, R.2
Ganesan, S.3
Proulx, M.K.4
Vladimer, G.I.5
Kaiser, W.J.6
Mocarski, E.S.7
Pouliot, K.8
Chan, F.K.9
Kelliher, M.A.10
Harris, P.A.11
Bertin, J.12
Gough, P.J.13
Shayakhmetov, D.M.14
Goguen, J.D.15
Fitzgerald, K.A.16
Silverman, N.17
Lien, E.18
-
46
-
-
33744912761
-
Interaction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis
-
Zauberman A, Cohen S, Mamroud E, Flashner Y, Tidhar A, Ber R, Elhanany E, Shafferman A, Velan B. 2006. Interaction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis. Infect Immun 74:3239-3250. http://dx.doi.org/10.1128/IAI.00097-06.
-
(2006)
Infect Immun
, vol.74
, pp. 3239-3250
-
-
Zauberman, A.1
Cohen, S.2
Mamroud, E.3
Flashner, Y.4
Tidhar, A.5
Ber, R.6
Elhanany, E.7
Shafferman, A.8
Velan, B.9
-
47
-
-
44949187452
-
Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence
-
Brodsky IE, Medzhitov R. 2008. Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLoS Pathog 4:e1000067. http://dx.doi.org/10.1371/journal.ppat.1000067.
-
(2008)
PLoS Pathog
, vol.4
-
-
Brodsky, I.E.1
Medzhitov, R.2
-
48
-
-
84872385200
-
YopK controls both rate and fidelity of Yop translocation
-
Dewoody R, Merritt PM, Marketon MM. 2013. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol 87:301-317. http://dx.doi.org/10.1111/mmi.12099.
-
(2013)
Mol Microbiol
, vol.87
, pp. 301-317
-
-
Dewoody, R.1
Merritt, P.M.2
Marketon, M.M.3
-
49
-
-
3342884252
-
The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells
-
Kerschen EJ, Cohen DA, Kaplan AM, Straley SC. 2004. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infect Immun 72:4589-4602. http://dx.doi.org/10.1128/IAI.72.8.4589-4602.2004.
-
(2004)
Infect Immun
, vol.72
, pp. 4589-4602
-
-
Kerschen, E.J.1
Cohen, D.A.2
Kaplan, A.M.3
Straley, S.C.4
-
50
-
-
0038719729
-
The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases
-
McDonald C, Vacratsis PO, Bliska JB, Dixon JE. 2003. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J Biol Chem 278:18514-18523. http://dx.doi.org/10.1074/jbc.M301226200.
-
(2003)
J Biol Chem
, vol.278
, pp. 18514-18523
-
-
McDonald, C.1
Vacratsis, P.O.2
Bliska, J.B.3
Dixon, J.E.4
-
51
-
-
77952678232
-
The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence
-
McCoy MW, Marre ML, Lesser CF, Mecsas J. 2010. The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect Immun 78:2584-2598. http://dx.doi.org/10.1128/IAI.00141-10.
-
(2010)
Infect Immun
, vol.78
, pp. 2584-2598
-
-
McCoy, M.W.1
Marre, M.L.2
Lesser, C.F.3
Mecsas, J.4
-
52
-
-
77955293133
-
Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence
-
McPhee JB, Mena P, Bliska JB. 2010. Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect Immun 78:3529-3539. http://dx.doi.org/10.1128/IAI.00269-10.
-
(2010)
Infect Immun
, vol.78
, pp. 3529-3539
-
-
McPhee, J.B.1
Mena, P.2
Bliska, J.B.3
-
53
-
-
78049236063
-
Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation
-
Hentschke M, Berneking L, Belmar Campos C, Buck F, Ruckdeschel K, Aepfelbacher M. 2010. Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLoS One 5:e13165. http://dx.doi.org/10.1371/journal.pone.0013165.
-
(2010)
PLoS One
, vol.5
-
-
Hentschke, M.1
Berneking, L.2
Belmar Campos, C.3
Buck, F.4
Ruckdeschel, K.5
Aepfelbacher, M.6
-
54
-
-
51949083412
-
Type III secretion decreases bacterial and host survival following phagocytosis of Yersinia pseudotuberculosis by macrophages
-
Zhang Y, Murtha J, Roberts MA, Siegel RM, Bliska JB. 2008. Type III secretion decreases bacterial and host survival following phagocytosis of Yersinia pseudotuberculosis by macrophages. Infect Immun 76:4299-4310. http://dx.doi.org/10.1128/IAI.00183-08.
-
(2008)
Infect Immun
, vol.76
, pp. 4299-4310
-
-
Zhang, Y.1
Murtha, J.2
Roberts, M.A.3
Siegel, R.M.4
Bliska, J.B.5
-
55
-
-
33748192535
-
Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors
-
Prehna G, Ivanov MI, Bliska JB, Stebbins CE. 2006. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell 126:869-880. http://dx.doi.org/10.1016/j.cell.2006.06.056.
-
(2006)
Cell
, vol.126
, pp. 869-880
-
-
Prehna, G.1
Ivanov, M.I.2
Bliska, J.B.3
Stebbins, C.E.4
-
56
-
-
0021183978
-
Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity
-
Celada A, Gray PW, Rinderknecht E, Schreiber RD. 1984. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med 160:55-74. http://dx.doi.org/10.1084/jem.160.1.55.
-
(1984)
J Exp Med
, vol.160
, pp. 55-74
-
-
Celada, A.1
Gray, P.W.2
Rinderknecht, E.3
Schreiber, R.D.4
-
57
-
-
77951221762
-
YopJ-promoted cytotoxicity and systemic colonization are associated with high levels of murine interleukin-18, gamma interferon, and neutrophils in a live vaccine model of Yersinia pseudotuberculosis infection
-
Zhang Y, Bliska JB. 2010. YopJ-promoted cytotoxicity and systemic colonization are associated with high levels of murine interleukin-18, gamma interferon, and neutrophils in a live vaccine model of Yersinia pseudotuberculosis infection. Infect Immun 78:2329-2341. http://dx.doi.org/10.1128/IAI.00094-10.
-
(2010)
Infect Immun
, vol.78
, pp. 2329-2341
-
-
Zhang, Y.1
Bliska, J.B.2
-
58
-
-
70350714459
-
Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation
-
Bergsbaken T, Cookson BT. 2009. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation. J Leukoc Biol 86:1153-1158. http://dx.doi.org/10.1189/jlb.0309146.
-
(2009)
J Leukoc Biol
, vol.86
, pp. 1153-1158
-
-
Bergsbaken, T.1
Cookson, B.T.2
-
59
-
-
39049188434
-
Expression of BRCC3, a novel cell cycle regulated molecule, is associated with increased phospho-ERK and cell proliferation
-
Boudreau HE, Broustas CG, Gokhale PC, Kumar D, Mewani RR, Rone JD, Haddad BR, Kasid U. 2007. Expression of BRCC3, a novel cell cycle regulated molecule, is associated with increased phospho-ERK and cell proliferation. Int J Mol Med 19:29-39.
-
(2007)
Int J Mol Med
, vol.19
, pp. 29-39
-
-
Boudreau, H.E.1
Broustas, C.G.2
Gokhale, P.C.3
Kumar, D.4
Mewani, R.R.5
Rone, J.D.6
Haddad, B.R.7
Kasid, U.8
-
60
-
-
84872782298
-
Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity
-
Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. 2013. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331-338. http://dx.doi.org/10.1016/j.molcel.2012.11.009.
-
(2013)
Mol Cell
, vol.49
, pp. 331-338
-
-
Py, B.F.1
Kim, M.S.2
Vakifahmetoglu-Norberg, H.3
Yuan, J.4
-
61
-
-
84876518121
-
Ribotoxic stress through p38 mitogen-activated protein kinase activates in vitro the human pyrin inflammasome
-
Yu JW, Farias A, Hwang I, Fernandes-Alnemri T, Alnemri ES. 2013. Ribotoxic stress through p38 mitogen-activated protein kinase activates in vitro the human pyrin inflammasome. J Biol Chem 288:11378-11383. http://dx.doi.org/10.1074/jbc.M112.448795.
-
(2013)
J Biol Chem
, vol.288
, pp. 11378-11383
-
-
Yu, J.W.1
Farias, A.2
Hwang, I.3
Fernandes-Alnemri, T.4
Alnemri, E.S.5
-
62
-
-
84906075102
-
Integrin-mediated first signal for inflammasome activation in intestinal epithelial cells
-
Thinwa J, Segovia JA, Bose S, Dube PH. 2014. Integrin-mediated first signal for inflammasome activation in intestinal epithelial cells. J Immunol 193:1373-1382. http://dx.doi.org/10.4049/jimmunol.1400145.
-
(2014)
J Immunol
, vol.193
, pp. 1373-1382
-
-
Thinwa, J.1
Segovia, J.A.2
Bose, S.3
Dube, P.H.4
-
63
-
-
0033861270
-
The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence
-
Black DS, Bliska JB. 2000. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol 37:515-527.
-
(2000)
Mol Microbiol
, vol.37
, pp. 515-527
-
-
Black, D.S.1
Bliska, J.B.2
-
64
-
-
39849084503
-
Regulation of Yersinia Yop-effector delivery by translocated YopE
-
Aili M, Isaksson EL, Carlsson SE, Wolf-Watz H, Rosqvist R, Francis MS. 2008. Regulation of Yersinia Yop-effector delivery by translocated YopE. Int J Med Microbiol 298:183-192. http://dx.doi.org/10.1016/j.ijmm.2007.04.007.
-
(2008)
Int J Med Microbiol
, vol.298
, pp. 183-192
-
-
Aili, M.1
Isaksson, E.L.2
Carlsson, S.E.3
Wolf-Watz, H.4
Rosqvist, R.5
Francis, M.S.6
-
65
-
-
0026674958
-
Invasin expression in Yersinia pseudotuberculosis
-
Simonet M, Falkow S. 1992. Invasin expression in Yersinia pseudotuberculosis. Infect Immun 60:4414-4417.
-
(1992)
Infect Immun
, vol.60
, pp. 4414-4417
-
-
Simonet, M.1
Falkow, S.2
|