-
1
-
-
84865029204
-
Pancreatic beta cells in very old mice retain capacity for compensatory proliferation
-
Stolovich-Rain M, Hija A, Grimsby J, Glaser B, Dor Y. Pancreatic beta cells in very old mice retain capacity for compensatory proliferation. J Biol Chem 2012; 287: 27407-27414
-
(2012)
J Biol Chem
, vol.287
, pp. 27407-27414
-
-
Stolovich-Rain, M.1
Hija, A.2
Grimsby, J.3
Glaser, B.4
Dor, Y.5
-
2
-
-
66649128739
-
Adaptive beta-cell proliferation is severely restricted with advanced age
-
Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 2009;58: 1365-1372
-
(2009)
Diabetes
, vol.58
, pp. 1365-1372
-
-
Rankin, M.M.1
Kushner, J.A.2
-
3
-
-
80054991835
-
PDGF signalling controls age-dependent proliferation in pancreatic β-cells
-
Chen H, Gu X, Liu Y, et al. PDGF signalling controls age-dependent proliferation in pancreatic β-cells. Nature 2011;478: 349-355
-
(2011)
Nature
, vol.478
, pp. 349-355
-
-
Chen, H.1
Gu, X.2
Liu, Y.3
-
4
-
-
24144473869
-
Very slow turnover of beta-cells in aged adult mice
-
Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA. Very slow turnover of beta-cells in aged adult mice. Diabetes 2005;54: 2557-2567
-
(2005)
Diabetes
, vol.54
, pp. 2557-2567
-
-
Teta, M.1
Long, S.Y.2
Wartschow, L.M.3
Rankin, M.M.4
Kushner, J.A.5
-
5
-
-
33749187810
-
P16INK4a induces an agedependent decline in islet regenerative potential
-
Krishnamurthy J, Ramsey MR, Ligon KL, et al. p16INK4a induces an agedependent decline in islet regenerative potential. Nature 2006;443: 453-457
-
(2006)
Nature
, vol.443
, pp. 453-457
-
-
Krishnamurthy, J.1
Ramsey, M.R.2
Ligon, K.L.3
-
7
-
-
61549108023
-
Role of CCN, a vertebrate specific gene family, in development
-
Katsube K, Sakamoto K, Tamamura Y, Yamaguchi A. Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ 2009;51: 55-67
-
(2009)
Dev Growth Differ
, vol.51
, pp. 55-67
-
-
Katsube, K.1
Sakamoto, K.2
Tamamura, Y.3
Yamaguchi, A.4
-
8
-
-
42549131051
-
Connective tissue growth factor: Structure-function relationships of a mosaic, multifunctional protein
-
de Winter P, Leoni P, Abraham D. Connective tissue growth factor: Structure-function relationships of a mosaic, multifunctional protein. Growth Factors 2008;26: 80-91
-
(2008)
Growth Factors
, vol.26
, pp. 80-91
-
-
De Winter, P.1
Leoni, P.2
Abraham, D.3
-
10
-
-
2542631834
-
Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex
-
Mercurio S, Latinkic B, Itasaki N, Krumlauf R, Smith JC. Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development 2004;131: 2137-2147
-
(2004)
Development
, vol.131
, pp. 2137-2147
-
-
Mercurio, S.1
Latinkic, B.2
Itasaki, N.3
Krumlauf, R.4
Smith, J.C.5
-
11
-
-
0033541389
-
The CCN family of angiogenic regulators: The integrin connection
-
Lau LF, Lam SC. The CCN family of angiogenic regulators: The integrin connection. Exp Cell Res 1999;248: 44-57
-
(1999)
Exp Cell Res
, vol.248
, pp. 44-57
-
-
Lau, L.F.1
Lam, S.C.2
-
12
-
-
84874256781
-
Regulation of pancreatic function by connective tissue growth factor (CTGF, CCN2)
-
Charrier A, Brigstock DR. Regulation of pancreatic function by connective tissue growth factor (CTGF, CCN2). Cytokine Growth Factor Rev 2013;24: 59-68
-
(2013)
Cytokine Growth Factor Rev
, vol.24
, pp. 59-68
-
-
Charrier, A.1
Brigstock, D.R.2
-
13
-
-
61449178818
-
Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis
-
Crawford LA, Guney MA, Oh YA, et al. Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis. Mol Endocrinol 2009;23: 324-336
-
(2009)
Mol Endocrinol
, vol.23
, pp. 324-336
-
-
Crawford, L.A.1
Guney, M.A.2
Oh, Y.A.3
-
14
-
-
80053059611
-
Connective tissue growth factor acts within both endothelial cells and beta cells to promote proliferation of developing beta cells
-
Guney MA, Petersen CP, Boustani A, et al. Connective tissue growth factor acts within both endothelial cells and beta cells to promote proliferation of developing beta cells. Proc Natl Acad Sci USA 2011;108: 15242-15247
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 15242-15247
-
-
Guney, M.A.1
Petersen, C.P.2
Boustani, A.3
-
15
-
-
84863798318
-
Differential regulation of embryonic and adult β cell replication
-
Gunasekaran U, Hudgens CW, Wright BT, Maulis MF, Gannon M. Differential regulation of embryonic and adult β cell replication. Cell Cycle 2012;11: 2431-2442
-
(2012)
Cell Cycle
, vol.11
, pp. 2431-2442
-
-
Gunasekaran, U.1
Hudgens, C.W.2
Wright, B.T.3
Maulis, M.F.4
Gannon, M.5
-
16
-
-
0035574854
-
Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system
-
Milo-Landesman D, Surana M, Berkovich I, et al. Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system. Cell Transplant 2001;10: 645-650
-
(2001)
Cell Transplant
, vol.10
, pp. 645-650
-
-
Milo-Landesman, D.1
Surana, M.2
Berkovich, I.3
-
17
-
-
77951611220
-
Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss
-
Thorel F, Népote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010;464: 1149-1154
-
(2010)
Nature
, vol.464
, pp. 1149-1154
-
-
Thorel, F.1
Népote, V.2
Avril, I.3
-
19
-
-
84964313811
-
Activated FoxM1 attenuates streptozotocin-mediated β-cell death
-
Golson ML, Maulis MF, Dunn JC, et al. Activated FoxM1 attenuates streptozotocin-mediated β-cell death. Mol Endocrinol 2014;28: 1435-1447
-
(2014)
Mol Endocrinol
, vol.28
, pp. 1435-1447
-
-
Golson, M.L.1
Maulis, M.F.2
Dunn, J.C.3
-
20
-
-
34247644369
-
Growth and regeneration of adult beta cells does not involve specialized progenitors
-
Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 2007; 12: 817-826
-
(2007)
Dev Cell
, vol.12
, pp. 817-826
-
-
Teta, M.1
Rankin, M.M.2
Long, S.Y.3
Stein, G.M.4
Kushner, J.A.5
-
22
-
-
20044384383
-
Gene transfer of constitutively active Akt markedly improves human islet transplant outcomes in diabetic severe combined immunodeficient mice
-
Rao P, Roccisana J, Takane KK, et al. Gene transfer of constitutively active Akt markedly improves human islet transplant outcomes in diabetic severe combined immunodeficient mice. Diabetes 2005;54: 1664-1675
-
(2005)
Diabetes
, vol.54
, pp. 1664-1675
-
-
Rao, P.1
Roccisana, J.2
Takane, K.K.3
-
23
-
-
84890605765
-
An assay for small scale screening of candidate β cell proliferative factors using intact islets
-
Mosser RE, Gannon M. An assay for small scale screening of candidate β cell proliferative factors using intact islets. Biotechniques 2013;55: 310-312
-
(2013)
Biotechniques
, vol.55
, pp. 310-312
-
-
Mosser, R.E.1
Gannon, M.2
-
24
-
-
0033504619
-
Connective tissue growth factor is a regulator for fibrosis in human chronic pancreatitis
-
di Mola FF, Friess H, Martignoni ME, et al. Connective tissue growth factor is a regulator for fibrosis in human chronic pancreatitis. Ann Surg 1999;230: 63-71
-
(1999)
Ann Surg
, vol.230
, pp. 63-71
-
-
Di Mola, F.F.1
Friess, H.2
Martignoni, M.E.3
-
25
-
-
80053603426
-
Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice
-
Criscimanna A, Speicher JA, Houshmand G, et al. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology 2011; 141: 1451-1462
-
(2011)
Gastroenterology
, vol.141
, pp. 1451-1462
-
-
Criscimanna, A.1
Speicher, J.A.2
Houshmand, G.3
-
26
-
-
0037665295
-
Role of VEGF-A in vascularization of pancreatic islets
-
Lammert E, Gu G, McLaughlin M, et al. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 2003;13: 1070-1074
-
(2003)
Curr Biol
, vol.13
, pp. 1070-1074
-
-
Lammert, E.1
Gu, G.2
McLaughlin, M.3
-
27
-
-
84891759758
-
Hepatocyte growth factor/c-Met signaling is required for β-cell regeneration
-
Alvarez-Perez JC, Ernst S, Demirci C, et al. Hepatocyte growth factor/c-Met signaling is required for β-cell regeneration. Diabetes 2014;63: 216-223
-
(2014)
Diabetes
, vol.63
, pp. 216-223
-
-
Alvarez-Perez, J.C.1
Ernst, S.2
Demirci, C.3
-
28
-
-
0037840309
-
Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61)
-
Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 2002;5: 153-165
-
(2002)
Angiogenesis
, vol.5
, pp. 153-165
-
-
Brigstock, D.R.1
-
29
-
-
84876500922
-
Molecular basis for the regulation of islet beta cell mass in mice: The role of E-cadherin
-
Wakae-Takada N, Xuan S, Watanabe K, Meda P, Leibel RL. Molecular basis for the regulation of islet beta cell mass in mice: The role of E-cadherin. Diabetologia 2013;56: 856-866
-
(2013)
Diabetologia
, vol.56
, pp. 856-866
-
-
Wakae-Takada, N.1
Xuan, S.2
Watanabe, K.3
Meda, P.4
Leibel, R.L.5
-
30
-
-
84881218353
-
Inactivation of specific β cell transcription factors in type 2 diabetes
-
Guo S, Dai C, Guo M, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 2013;123: 3305-3316
-
(2013)
J Clin Invest
, vol.123
, pp. 3305-3316
-
-
Guo, S.1
Dai, C.2
Guo, M.3
-
31
-
-
34248191270
-
Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells
-
Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S, Dor Y. Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells. Diabetes 2007;56: 1299-1304
-
(2007)
Diabetes
, vol.56
, pp. 1299-1304
-
-
Weinberg, N.1
Ouziel-Yahalom, L.2
Knoller, S.3
Efrat, S.4
Dor, Y.5
-
32
-
-
84866389264
-
Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
-
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 2012;150: 1223-1234
-
(2012)
Cell
, vol.150
, pp. 1223-1234
-
-
Talchai, C.1
Xuan, S.2
Lin, H.V.3
Sussel, L.4
Accili, D.5
-
33
-
-
77957583357
-
MafA and MafB regulate genes critical to beta-cells in a unique temporal manner
-
Artner I, Hang Y, Mazur M, et al. MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes 2010;59: 2530-2539
-
(2010)
Diabetes
, vol.59
, pp. 2530-2539
-
-
Artner, I.1
Hang, Y.2
Mazur, M.3
-
34
-
-
33646194560
-
A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells
-
Nishimura W, Kondo T, Salameh T, et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 2006; 293: 526-539
-
(2006)
Dev Biol
, vol.293
, pp. 526-539
-
-
Nishimura, W.1
Kondo, T.2
Salameh, T.3
-
35
-
-
33746587792
-
The FoxM1 transcription factor is required to maintain pancreatic beta-cell mass
-
Zhang H, Ackermann AM, Gusarova GA, et al. The FoxM1 transcription factor is required to maintain pancreatic beta-cell mass. Mol Endocrinol 2006;20: 1853-1866
-
(2006)
Mol Endocrinol
, vol.20
, pp. 1853-1866
-
-
Zhang, H.1
Ackermann, A.M.2
Gusarova, G.A.3
-
36
-
-
33847687194
-
Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion
-
Ackermann AM, Gannon M. Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol 2007;38: 193-206
-
(2007)
J Mol Endocrinol
, vol.38
, pp. 193-206
-
-
Ackermann, A.M.1
Gannon, M.2
-
37
-
-
77449086017
-
Gestational diabetes mellitus resulting from impaired beta-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen
-
Zhang H, Zhang J, Pope CF, et al. Gestational diabetes mellitus resulting from impaired beta-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes 2010;59: 143-152
-
(2010)
Diabetes
, vol.59
, pp. 143-152
-
-
Zhang, H.1
Zhang, J.2
Pope, C.F.3
-
38
-
-
84890146153
-
High Fat Diet Regulation of β-Cell Proliferation and β-Cell Mass
-
Golson ML, Misfeldt AA, Kopsombut UG, Petersen CP, Gannon M. High Fat Diet Regulation of β-Cell Proliferation and β-Cell Mass. Open Endocrinol J 2010;4: 66-77
-
(2010)
Open Endocrinol J
, vol.4
, pp. 66-77
-
-
Golson, M.L.1
Misfeldt, A.A.2
Kopsombut, U.G.3
Petersen, C.P.4
Gannon, M.5
-
39
-
-
33846598850
-
Connective tissue growth factor (CTGF/CCN2) is a downstream mediator for TGF-beta1-induced extracellular matrix production in osteoblasts
-
Arnott JA, Nuglozeh E, Rico MC, et al. Connective tissue growth factor (CTGF/CCN2) is a downstream mediator for TGF-beta1-induced extracellular matrix production in osteoblasts. J Cell Physiol 2007;210: 843-852
-
(2007)
J Cell Physiol
, vol.210
, pp. 843-852
-
-
Arnott, J.A.1
Nuglozeh, E.2
Rico, M.C.3
-
40
-
-
0038644847
-
Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factorbeta 2 in fibroblasts
-
Leask A, Holmes A, Black CM, Abraham DJ. Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factorbeta 2 in fibroblasts. J Biol Chem 2003;278: 13008-13015
-
(2003)
J Biol Chem
, vol.278
, pp. 13008-13015
-
-
Leask, A.1
Holmes, A.2
Black, C.M.3
Abraham, D.J.4
-
41
-
-
21344470149
-
TGF-beta1-induced connective tissue growth factor (CCN2) expression in human renal proximal tubule epithelial cells requires Ras/MEK/ERK and Smad signalling
-
Phanish MK, Wahab NA, Hendry BM, Dockrell ME. TGF-beta1-induced connective tissue growth factor (CCN2) expression in human renal proximal tubule epithelial cells requires Ras/MEK/ERK and Smad signalling. Nephron, Exp Nephrol 2005;100: E156-e165
-
(2005)
Nephron, Exp Nephrol
, vol.100
, pp. e156-e165
-
-
Phanish, M.K.1
Wahab, N.A.2
Hendry, B.M.3
Dockrell, M.E.4
-
42
-
-
34249845879
-
Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways
-
Pannu J, Nakerakanti S, Smith E, ten Dijke P, Trojanowska M. Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways. J Biol Chem 2007;282: 10405-10413
-
(2007)
J Biol Chem
, vol.282
, pp. 10405-10413
-
-
Pannu, J.1
Nakerakanti, S.2
Smith, E.3
Ten Dijke, P.4
Trojanowska, M.5
-
43
-
-
84896050649
-
BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression
-
Ren W, Sun X, Wang K, et al. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression. Mol Biol Rep 2014;41: 1373-1383
-
(2014)
Mol Biol Rep
, vol.41
, pp. 1373-1383
-
-
Ren, W.1
Sun, X.2
Wang, K.3
-
44
-
-
70349150179
-
Beta1 integrin/ FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival
-
Saleem S, Li J, Yee SP, Fellows GF, Goodyer CG, Wang R. beta1 integrin/ FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival. J Pathol 2009;219: 182-192
-
(2009)
J Pathol
, vol.219
, pp. 182-192
-
-
Saleem, S.1
Li, J.2
Yee, S.P.3
Fellows, G.F.4
Goodyer, C.G.5
Wang, R.6
-
45
-
-
84880925647
-
B1 integrin is a crucial regulator of pancreatic β-cell expansion
-
Diaferia GR, Jimenez-Caliani AJ, Ranjitkar P, et al. b1 integrin is a crucial regulator of pancreatic β-cell expansion. Development 2013;140: 3360-3372
-
(2013)
Development
, vol.140
, pp. 3360-3372
-
-
Diaferia, G.R.1
Jimenez-Caliani, A.J.2
Ranjitkar, P.3
-
46
-
-
33846024011
-
Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance
-
Terauchi Y, Takamoto I, Kubota N, et al. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 2007;117: 246-257
-
(2007)
J Clin Invest
, vol.117
, pp. 246-257
-
-
Terauchi, Y.1
Takamoto, I.2
Kubota, N.3
-
47
-
-
19944427451
-
Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells
-
Luo Q, Kang Q, Si W, et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem 2004;279: 55958-55968
-
(2004)
J Biol Chem
, vol.279
, pp. 55958-55968
-
-
Luo, Q.1
Kang, Q.2
Si, W.3
-
48
-
-
84886545834
-
A smad signaling network regulates islet cell proliferation
-
El-Gohary Y, Tulachan S, Wiersch J, et al. A smad signaling network regulates islet cell proliferation. Diabetes 2014;63: 224-236
-
(2014)
Diabetes
, vol.63
, pp. 224-236
-
-
El-Gohary, Y.1
Tulachan, S.2
Wiersch, J.3
-
49
-
-
43749120731
-
Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation
-
Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008;283: 8723-8735
-
(2008)
J Biol Chem
, vol.283
, pp. 8723-8735
-
-
Liu, Z.1
Habener, J.F.2
-
50
-
-
77954480533
-
Serotonin regulates pancreatic beta cell mass during pregnancy
-
Kim H, Toyofuku Y, Lynn FC, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 2010;16: 804-808
-
(2010)
Nat Med
, vol.16
, pp. 804-808
-
-
Kim, H.1
Toyofuku, Y.2
Lynn, F.C.3
-
51
-
-
84888310803
-
Serotonin regulates glucosestimulated insulin secretion from pancreatic β cells during pregnancy
-
Ohara-Imaizumi M, Kim H, Yoshida M, et al. Serotonin regulates glucosestimulated insulin secretion from pancreatic β cells during pregnancy. Proc Natl Acad Sci USA 2013;110: 19420-19425
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 19420-19425
-
-
Ohara-Imaizumi, M.1
Kim, H.2
Yoshida, M.3
|