메뉴 건너뛰기




Volumn 24, Issue 1, 2014, Pages 175-186

A review of feature selection methods based on mutual information

Author keywords

Complementarity; Feature selection; Markov blanket; Mutual information; Redundancy; Relevance; Sinergy

Indexed keywords

COMPLEMENTARITY; MARKOV BLANKETS; MUTUAL INFORMATIONS; RELEVANCE; SINERGY;

EID: 84891840571     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-013-1368-0     Document Type: Review
Times cited : (928)

References (68)
  • 3
    • 77952590681 scopus 로고    scopus 로고
    • On the feature selection criterion based on an approximation of multidimensional mutual information
    • Balagani K, Phoha V (2010) On the feature selection criterion based on an approximation of multidimensional mutual information. IEEE Trans Pattern Anal Mach Intell 32(7): 1342-1343.
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , Issue.7 , pp. 1342-1343
    • Balagani, K.1    Phoha, V.2
  • 4
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4): 537-550.
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 5
    • 0346936077 scopus 로고    scopus 로고
    • The co-information lattice
    • Bell AJ (2003) The co-information lattice. Analysis pp 921-926.
    • (2003) Analysis , pp. 921-926
    • Bell, A.J.1
  • 6
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • Bell DA, Wang H (2000) A formalism for relevance and its application in feature subset selection. Mach Learn 41(2): 175-195.
    • (2000) Mach Learn , vol.41 , Issue.2 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 9
    • 50549092368 scopus 로고    scopus 로고
    • Feature selection, mutual information, and the classification of high-dimensional patterns: applications to image classification and microarray data analysis
    • Bonev B, Escolano F, Cazorla M (2008) Feature selection, mutual information, and the classification of high-dimensional patterns: applications to image classification and microarray data analysis. Pattern Anal Appl 11(3-4): 309-319.
    • (2008) Pattern Anal Appl , vol.11 , Issue.3-4 , pp. 309-319
    • Bonev, B.1    Escolano, F.2    Cazorla, M.3
  • 10
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
    • Brown G, Pocock A, Zhao MJ, Luján M (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13: 27-66.
    • (2012) J Mach Learn Res , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.J.3    Luján, M.4
  • 12
    • 79954439038 scopus 로고    scopus 로고
    • Conditional mutual information-based feature selection analyzing for synergy and redundancy
    • Cheng H, Qin Z, Feng C, Wang Y, Li F (2011) Conditional mutual information-based feature selection analyzing for synergy and redundancy. Electron Telecommun Res Inst 33(2): 210-218.
    • (2011) Electron Telecommun Res Inst , vol.33 , Issue.2 , pp. 210-218
    • Cheng, H.1    Qin, Z.2    Feng, C.3    Wang, Y.4    Li, F.5
  • 13
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • Chow T, Huang D (2005) Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information. IEEE Trans Neural Netw 16(1): 213-224.
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.1 , pp. 213-224
    • Chow, T.1    Huang, D.2
  • 18
    • 0038486418 scopus 로고    scopus 로고
    • A niching genetic algorithm for selecting features for neural networks classifiers
    • Springer, New York
    • Estévez PA, Caballero R (1998) A niching genetic algorithm for selecting features for neural networks classifiers. In: Perspectives in neural computation, Springer, New York, pp 311-316.
    • (1998) Perspectives in neural computation , pp. 311-316
    • Estévez, P.A.1    Caballero, R.2
  • 20
    • 0028273691 scopus 로고
    • Relations between entropy and error probability
    • Feder M, Merhav N (1994) Relations between entropy and error probability. IEEE Trans Inform Theory 40(1): 259-266.
    • (1994) IEEE Trans Inform Theory , vol.40 , Issue.1 , pp. 259-266
    • Feder, M.1    Merhav, N.2
  • 21
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F, Guyon I (2004) Fast binary feature selection with conditional mutual information. J Mach Learn Res 5: 1531-1555.
    • (2004) J Mach Learn Res , vol.5 , pp. 1531-1555
    • Fleuret, F.1    Guyon, I.2
  • 22
    • 58149114589 scopus 로고    scopus 로고
    • Gait feature subset selection by mutual information
    • Guo B, Nixon MS (2009) Gait feature subset selection by mutual information. Syst Man Cybern Part A IEEE Trans 39(1): 36-46.
    • (2009) Syst Man Cybern Part A IEEE Trans , vol.39 , Issue.1 , pp. 36-46
    • Guo, B.1    Nixon, M.S.2
  • 23
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 26
    • 84915005479 scopus 로고
    • Probability of error, equivocation, and the chernoff bound
    • Hellman M, Raviv J (1970) Probability of error, equivocation, and the chernoff bound. IEEE Trans Inform Theory 16(4): 368-372.
    • (1970) IEEE Trans Inform Theory , vol.16 , Issue.4 , pp. 368-372
    • Hellman, M.1    Raviv, J.2
  • 28
    • 0242662174 scopus 로고    scopus 로고
    • Dimensionality reduction in automatic knowledge acquisition: a simple greedy search approach
    • Huang S (2003) Dimensionality reduction in automatic knowledge acquisition: a simple greedy search approach. IEEE Trans Knowl Data Eng 15(6): 1364-1373.
    • (2003) IEEE Trans Knowl Data Eng , vol.15 , Issue.6 , pp. 1364-1373
    • Huang, S.1
  • 30
    • 85013679633 scopus 로고    scopus 로고
    • Quantifying and visualizing attribute interactions
    • Jakulin A, Bratko I (2003) Quantifying and visualizing attribute interactions. CoRR cs. AI/0308002, http://arxiv. org/abs/cs. AI/0308002.
    • (2003) CoRR cs. AI/0308002
    • Jakulin, A.1    Bratko, I.2
  • 31
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1-2): 273-324.
    • (1997) Artif Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 32
    • 19044391788 scopus 로고    scopus 로고
    • Relevance measures for subset variable selection in regression problems based on k-additive mutual information
    • Kojadinovic I (2005) Relevance measures for subset variable selection in regression problems based on k-additive mutual information. Comput Stat Data Anal 49(4): 1205-1227.
    • (2005) Comput Stat Data Anal , vol.49 , Issue.4 , pp. 1205-1227
    • Kojadinovic, I.1
  • 36
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22: 49-86.
    • (1951) Ann Math Stat , vol.22 , pp. 49-86
    • Kullback, S.1    Leibler, R.A.2
  • 37
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N, Choi CH (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1): 143-159.
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 39
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • Morgan Kaufmann
    • Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Proceedings of speech and natural language workshop, Morgan Kaufmann, pp 212-217.
    • (1992) Proceedings of speech and natural language workshop , pp. 212-217
    • Lewis, D.D.1
  • 40
    • 33745869477 scopus 로고    scopus 로고
    • Conditional infomax learning: an integrated framework for feature extraction and fusion
    • Springer, Berlin
    • Lin D, Tang X (2006) Conditional infomax learning: an integrated framework for feature extraction and fusion. In: Computer vision-ECCV 2006, Lecture Notes in Computer Science, vol 3951, Springer, Berlin, pp 68-82.
    • (2006) Computer vision-ECCV 2006, Lecture Notes in Computer Science , vol.3951 , pp. 68-82
    • Lin, D.1    Tang, X.2
  • 41
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • Marill T, Green D (1963) On the effectiveness of receptors in recognition systems. IEEE Trans Inform Theory 9(1): 11-17.
    • (1963) IEEE Trans Inform Theory , vol.9 , Issue.1 , pp. 11-17
    • Marill, T.1    Green, D.2
  • 42
    • 0002801737 scopus 로고
    • Multivariate information transmission
    • McGill W (1954) Multivariate information transmission. Psychometrika 19(2): 97-116.
    • (1954) Psychometrika , vol.19 , Issue.2 , pp. 97-116
    • McGill, W.1
  • 43
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in microarray data using variable complementarity
    • Meyer P, Schretter C, Bontempi G (2008) Information-theoretic feature selection in microarray data using variable complementarity. IEEE J Sel Top Signal Process 2(3): 261-274.
    • (2008) IEEE J Sel Top Signal Process , vol.2 , Issue.3 , pp. 261-274
    • Meyer, P.1    Schretter, C.2    Bontempi, G.3
  • 44
    • 79957858309 scopus 로고    scopus 로고
    • Feature selection based on inference correlation
    • Mo D, Huang SH (2011) Feature selection based on inference correlation. Intell Data Anal 15(3): 375-398.
    • (2011) Intell Data Anal , vol.15 , Issue.3 , pp. 375-398
    • Mo, D.1    Huang, S.H.2
  • 45
    • 82155192307 scopus 로고    scopus 로고
    • Fractal-based intrinsic dimension estimation and its application in dimensionality reduction
    • Mo D, Huang SH (2012) Fractal-based intrinsic dimension estimation and its application in dimensionality reduction. IEEE Trans Knowl Data Eng 24(1): 59-71.
    • (2012) IEEE Trans Knowl Data Eng , vol.24 , Issue.1 , pp. 59-71
    • Mo, D.1    Huang, S.H.2
  • 46
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8): 1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 48
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: recommendations for practitioners
    • Raudys S, Jain A (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3): 252-264.
    • (1991) IEEE Trans Pattern Anal Mach Intell , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.1    Jain, A.2
  • 49
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19): 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 50
    • 0036532821 scopus 로고    scopus 로고
    • A hybrid filter/wrapper approach of feature selection using information theory
    • Sebban M, Nock R (2002) A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recogn 35(4): 835-846.
    • (2002) Pattern Recogn , vol.35 , Issue.4 , pp. 835-846
    • Sebban, M.1    Nock, R.2
  • 51
    • 79952392583 scopus 로고    scopus 로고
    • Variable selection: A statistical dependence perspective
    • 2010 ninth international conference
    • Seth S, Príncipe J (2010) Variable selection: A statistical dependence perspective. In: Machine Learning and Applications (ICMLA), 2010 ninth international conference, pp 931-936.
    • (2010) Machine Learning and Applications (ICMLA) , pp. 931-936
    • Seth, S.1    Príncipe, J.2
  • 52
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 625-56
    • Shannon CE (1948) A mathematical theory of communication. Bell System Technical J 27: 379-423, 625-56.
    • (1948) Bell System Technical J , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 53
    • 3042527351 scopus 로고    scopus 로고
    • Fast branch & bound algorithms for optimal feature selection
    • Somol P, Pudil P, Kittler J (2004) Fast branch & bound algorithms for optimal feature selection. IEEE Trans Pattern Anal Mach Intell 26(7): 900-912.
    • (2004) IEEE Trans Pattern Anal Mach Intell , vol.26 , Issue.7 , pp. 900-912
    • Somol, P.1    Pudil, P.2    Kittler, J.3
  • 60
    • 84891878118 scopus 로고    scopus 로고
    • Cmim-2: an enhanced conditional mutual information maximization criterion for feature selection
    • Vergara JR, Estévez PA (2010) Cmim-2: an enhanced conditional mutual information maximization criterion for feature selection. J Appl Comput Sci Methods 2(1): 5-20.
    • (2010) J Appl Comput Sci Methods , vol.2 , Issue.1 , pp. 5-20
    • Vergara, J.R.1    Estévez, P.A.2
  • 62
    • 0345997703 scopus 로고
    • Information theoretical analysis of multivariate correlation
    • Watanabe S (1960) Information theoretical analysis of multivariate correlation. IBM J Res Dev 4(1): 66-82.
    • (1960) IBM J Res Dev , vol.4 , Issue.1 , pp. 66-82
    • Watanabe, S.1
  • 65
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • Whitney A (1971) A direct method of nonparametric measurement selection. IEEE Trans Comput C-20(9): 1100-1103.
    • (1971) IEEE Trans Comput , vol.C-20 , Issue.9 , pp. 1100-1103
    • Whitney, A.1
  • 67
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5: 1205-1224.
    • (2004) J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 68
    • 65449184542 scopus 로고    scopus 로고
    • Searching for interacting features in subset selection
    • Zhao Z, Liu H (2009) Searching for interacting features in subset selection. Intell Data Anal 13(2): 207-228.
    • (2009) Intell Data Anal , vol.13 , Issue.2 , pp. 207-228
    • Zhao, Z.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.