-
1
-
-
84905669535
-
Towards large scale fermentative production of succinic acid
-
Jansen M.L., van Gulik W.M. Towards large scale fermentative production of succinic acid. Curr Opin Biotech 2014, 30:190-197.
-
(2014)
Curr Opin Biotech
, vol.30
, pp. 190-197
-
-
Jansen, M.L.1
van Gulik, W.M.2
-
2
-
-
84908257459
-
Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes
-
Pinazo J.M., Domine M.E., Parvulescu V., Petru F. Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal Today 2015, 239:17-24.
-
(2015)
Catal Today
, vol.239
, pp. 17-24
-
-
Pinazo, J.M.1
Domine, M.E.2
Parvulescu, V.3
Petru, F.4
-
3
-
-
84923809316
-
Biorefineries for the production of top building block chemicals and their derivatives
-
Choi S., Song C.W., Shin J.H., Lee S.Y. Biorefineries for the production of top building block chemicals and their derivatives. Metabol Eng 2015, 28:223-239.
-
(2015)
Metabol Eng
, vol.28
, pp. 223-239
-
-
Choi, S.1
Song, C.W.2
Shin, J.H.3
Lee, S.Y.4
-
4
-
-
84892476595
-
Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy
-
Cok B., Tsiropoulos I., Roes A.L., Patel M.K. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuel Bioprod Bior 2014, 8:16-29.
-
(2014)
Biofuel Bioprod Bior
, vol.8
, pp. 16-29
-
-
Cok, B.1
Tsiropoulos, I.2
Roes, A.L.3
Patel, M.K.4
-
5
-
-
0034507458
-
Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain
-
Kubo Y., Takagi H., Nakamori S. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. J Biosci Bioeng 2000, 90:619-624.
-
(2000)
J Biosci Bioeng
, vol.90
, pp. 619-624
-
-
Kubo, Y.1
Takagi, H.2
Nakamori, S.3
-
6
-
-
84904067966
-
Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling
-
Ito Y., Hirasawa T., Shimizu H. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Biosci Biotechnol Biochem 2014, 78:151-159.
-
(2014)
Biosci Biotechnol Biochem
, vol.78
, pp. 151-159
-
-
Ito, Y.1
Hirasawa, T.2
Shimizu, H.3
-
7
-
-
84856777402
-
Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
-
Ida Y., Furusawa C., Hirasawa T., Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 2012, 113:192-195.
-
(2012)
J Biosci Bioeng
, vol.113
, pp. 192-195
-
-
Ida, Y.1
Furusawa, C.2
Hirasawa, T.3
Shimizu, H.4
-
8
-
-
49549104162
-
Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN. PK113-1A
-
Jouhten P., Rintala E., Huuskonen A., Tamminen A., Toivari M., Wiebe M., Ruohonen L., Penttilä M., Maaheimo H. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN. PK113-1A. Bmc Syst Biol 2008, 2:60.
-
(2008)
Bmc Syst Biol
, vol.2
, pp. 60
-
-
Jouhten, P.1
Rintala, E.2
Huuskonen, A.3
Tamminen, A.4
Toivari, M.5
Wiebe, M.6
Ruohonen, L.7
Penttilä, M.8
Maaheimo, H.9
-
9
-
-
78049430020
-
Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
-
Raab A.M., Gebhardt G., Bolotina N., Weuster-Botz D., Lang C. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metabol Eng 2010, 12:518-525.
-
(2010)
Metabol Eng
, vol.12
, pp. 518-525
-
-
Raab, A.M.1
Gebhardt, G.2
Bolotina, N.3
Weuster-Botz, D.4
Lang, C.5
-
10
-
-
84872655172
-
Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
-
Otero J.M., Cimini D., Patil K.R., Poulsen S.G., Olsson L., Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PloS One 2013, 8:54144.
-
(2013)
PloS One
, vol.8
, pp. 54144
-
-
Otero, J.M.1
Cimini, D.2
Patil, K.R.3
Poulsen, S.G.4
Olsson, L.5
Nielsen, J.6
-
11
-
-
84885441663
-
A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli
-
Li Y., Li M., Zhang X., Yang P., Liang Q., Qi Q. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresour Technol 2013, 149:333-340.
-
(2013)
Bioresour Technol
, vol.149
, pp. 333-340
-
-
Li, Y.1
Li, M.2
Zhang, X.3
Yang, P.4
Liang, Q.5
Qi, Q.6
-
12
-
-
0037167490
-
Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae
-
Enomoto K., Arikawa Y., Muratsubaki H. Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae. FEMS Microbiol Lett 2002, 215:103-108.
-
(2002)
FEMS Microbiol Lett
, vol.215
, pp. 103-108
-
-
Enomoto, K.1
Arikawa, Y.2
Muratsubaki, H.3
-
13
-
-
84893482649
-
Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
-
Yan D., Wang C., Zhou J., Liu Y., Yang M., Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 2014, 156:232-239.
-
(2014)
Bioresour Technol
, vol.156
, pp. 232-239
-
-
Yan, D.1
Wang, C.2
Zhou, J.3
Liu, Y.4
Yang, M.5
Xing, J.6
-
14
-
-
84879236195
-
Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production
-
Agren R., Otero J.M., Nielsen J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol 2013, 40:735-747.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, pp. 735-747
-
-
Agren, R.1
Otero, J.M.2
Nielsen, J.3
-
15
-
-
84906948968
-
Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?
-
Sandström A.G., Almqvist H., Portugal-Nunes D., Neves D., Lidén G., Gorwa-Grauslund M.F. Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?. Appl Microbiol Biot 2014, 98:7299-7318.
-
(2014)
Appl Microbiol Biot
, vol.98
, pp. 7299-7318
-
-
Sandström, A.G.1
Almqvist, H.2
Portugal-Nunes, D.3
Neves, D.4
Lidén, G.5
Gorwa-Grauslund, M.F.6
-
16
-
-
84906831093
-
Compositions and methods for succinate production
-
US20130302866A1.
-
Finley KR, Huryta JM, Mastel BM, McMullin TW, Poynter GM, Rush BJ, Watts KT, Fosmer AM, McIntosh VL, Brady KM: Compositions and methods for succinate production. US patent 2013, US20130302866A1.
-
(2013)
US patent
-
-
Finley, K.R.1
Huryta, J.M.2
Mastel, B.M.3
McMullin, T.W.4
Poynter, G.M.5
Rush, B.J.6
Watts, K.T.7
Fosmer, A.M.8
McIntosh, V.L.9
Brady, K.M.10
-
17
-
-
85028946486
-
Methods for succinate production
-
US20140363862A1. C. krusei mutant strain was developed by Bioamber for the enhanced production of SA under low pH condition.
-
Rush BJ, Fosmer AM: Methods for succinate production. US patent 2014, US20140363862A1. C. krusei mutant strain was developed by Bioamber for the enhanced production of SA under low pH condition.
-
(2014)
US patent
-
-
Rush, B.J.1
Fosmer, A.M.2
-
18
-
-
70449536496
-
Genes restoring redox balance in fermentation-deficient E. coli NZN111
-
Singh A., Lynch M.D., Gill R.T. Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metabol Eng 2009, 11:347-354.
-
(2009)
Metabol Eng
, vol.11
, pp. 347-354
-
-
Singh, A.1
Lynch, M.D.2
Gill, R.T.3
-
19
-
-
69249240172
-
Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase
-
Wang W., Li Z., Xie J., Ye Q. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase. Bioprocess Biosyst Eng 2009, 32:737-745.
-
(2009)
Bioprocess Biosyst Eng
, vol.32
, pp. 737-745
-
-
Wang, W.1
Li, Z.2
Xie, J.3
Ye, Q.4
-
20
-
-
0035158424
-
Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli
-
Chatterjee R., Millard C.S., Champion K., Clark D.P., Donnelly M.I. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 2001, 67:148-154.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 148-154
-
-
Chatterjee, R.1
Millard, C.S.2
Champion, K.3
Clark, D.P.4
Donnelly, M.I.5
-
21
-
-
0036309458
-
Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions
-
Vemuri G., Eiteman M., Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 2002, 28:325-332.
-
(2002)
J Ind Microbiol Biotechnol
, vol.28
, pp. 325-332
-
-
Vemuri, G.1
Eiteman, M.2
Altman, E.3
-
22
-
-
41249084917
-
Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate
-
Jantama K., Haupt M., Svoronos S.A., Zhang X., Moore J., Shanmugam K., Ingram L. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 2008, 99:1140-1153.
-
(2008)
Biotechnol Bioeng
, vol.99
, pp. 1140-1153
-
-
Jantama, K.1
Haupt, M.2
Svoronos, S.A.3
Zhang, X.4
Moore, J.5
Shanmugam, K.6
Ingram, L.7
-
24
-
-
19744367895
-
Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions
-
Lin H., Bennett G.N., San K.Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng 2005, 90:775-779.
-
(2005)
Biotechnol Bioeng
, vol.90
, pp. 775-779
-
-
Lin, H.1
Bennett, G.N.2
San, K.Y.3
-
25
-
-
29144484729
-
Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
-
Lee S.J., Lee D.-Y., Kim T.Y., Kim B.H., Lee J., Lee S.Y. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 2005, 71:7880-7887.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 7880-7887
-
-
Lee, S.J.1
Lee, D.-Y.2
Kim, T.Y.3
Kim, B.H.4
Lee, J.5
Lee, S.Y.6
-
26
-
-
85021359684
-
Myriant: Succinic Acid & Derivatives SBU
-
Myriant: Succinic Acid & Derivatives SBU. http://www.myriant.com/pdf/myriant-succinic-acid-customer-presentation-english.pdf.
-
-
-
-
27
-
-
0036225306
-
Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen
-
Lee P., Lee S., Hong S., Chang H. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 2002, 58:663-668.
-
(2002)
Appl Microbiol Biotechnol
, vol.58
, pp. 663-668
-
-
Lee, P.1
Lee, S.2
Hong, S.3
Chang, H.4
-
28
-
-
5044220423
-
The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens
-
Hong S.H., Kim J.S., Lee S.Y., In Y.H., Choi S.S., Rih J.-K., Kim C.H., Jeong H., Hur C.G., Kim J.J. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 2004, 22:1275-1281.
-
(2004)
Nat Biotechnol
, vol.22
, pp. 1275-1281
-
-
Hong, S.H.1
Kim, J.S.2
Lee, S.Y.3
In, Y.H.4
Choi, S.S.5
Rih, J.-K.6
Kim, C.H.7
Jeong, H.8
Hur, C.G.9
Kim, J.J.10
-
29
-
-
33645029734
-
Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production
-
Lee S.J., Song H., Lee S.Y. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 2006, 72:1939-1948.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 1939-1948
-
-
Lee, S.J.1
Song, H.2
Lee, S.Y.3
-
30
-
-
50249161426
-
Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7
-
Oh I.J., Lee H.W., Park C.H., Lee S.Y., Lee J. Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol 2008, 18:908-912.
-
(2008)
J Microbiol Biotechnol
, vol.18
, pp. 908-912
-
-
Oh, I.J.1
Lee, H.W.2
Park, C.H.3
Lee, S.Y.4
Lee, J.5
-
31
-
-
84960867499
-
Novel engineered microorganism producing homo-succinic acid and method for preparing succinic acid using the same
-
EP2054502B1.
-
Lee SY, Lim SW, Song H: Novel engineered microorganism producing homo-succinic acid and method for preparing succinic acid using the same. EP patent 2014, EP2054502B1.
-
(2014)
EP patent
-
-
Lee, S.Y.1
Lim, S.W.2
Song, H.3
-
32
-
-
85014875113
-
Mutant microorganism producing succinic acid simultaneously using sucrose and glycerol, and method for preparing succinic acid using same
-
US8691516B2.
-
Lee SY, Lee JW, Choi S, Yi J: Mutant microorganism producing succinic acid simultaneously using sucrose and glycerol, and method for preparing succinic acid using same. US patent 2014, US8691516B2.
-
(2014)
US patent
-
-
Lee, S.Y.1
Lee, J.W.2
Choi, S.3
Yi, J.4
-
33
-
-
54849433352
-
Succinic acid production by a newly isolated bacterium
-
Scholten E., Dägele D. Succinic acid production by a newly isolated bacterium. Biotechnol Lett 2008, 30:2143-2146.
-
(2008)
Biotechnol Lett
, vol.30
, pp. 2143-2146
-
-
Scholten, E.1
Dägele, D.2
-
34
-
-
76849086768
-
Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen
-
Kuhnert P., Scholten E., Haefner S., Mayor D., Frey J. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int J Syst Evol Microbiol 2010, 60:44-50.
-
(2010)
Int J Syst Evol Microbiol
, vol.60
, pp. 44-50
-
-
Kuhnert, P.1
Scholten, E.2
Haefner, S.3
Mayor, D.4
Frey, J.5
-
35
-
-
84884531356
-
Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens
-
Becker J., Reinefeld J., Stellmacher R., Schäfer R., Lange A., Meyer H., Lalk M., Zelder O., von Abendroth G., Schröder H. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Biotechnol Bioeng 2013, 110:3013-3023.
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 3013-3023
-
-
Becker, J.1
Reinefeld, J.2
Stellmacher, R.3
Schäfer, R.4
Lange, A.5
Meyer, H.6
Lalk, M.7
Zelder, O.8
von Abendroth, G.9
Schröder, H.10
-
36
-
-
84960887143
-
Rumen bacteria variants and process for preparing succinic acid employing the same
-
US7470530B2.
-
Lee SY, Lee SJ: Rumen bacteria variants and process for preparing succinic acid employing the same. US patent 2008, US7470530B2.
-
(2008)
US patent
-
-
Lee, S.Y.1
Lee, S.J.2
-
37
-
-
0031007854
-
Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z
-
Van der Werf M.J., Guettler M.V., Jain M.K., Zeikus J.G. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 1997, 167:332-342.
-
(1997)
Arch Microbiol
, vol.167
, pp. 332-342
-
-
Van der Werf, M.J.1
Guettler, M.V.2
Jain, M.K.3
Zeikus, J.G.4
-
38
-
-
33747280991
-
Production of succinic acid by bacterial fermentation
-
Song H., Lee S.Y. Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 2006, 39:352-361.
-
(2006)
Enzyme Microb Technol
, vol.39
, pp. 352-361
-
-
Song, H.1
Lee, S.Y.2
-
39
-
-
8644258283
-
Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors
-
Urbance S.E., Pometto A.L., DiSpirito A.A., Denli Y. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 2004, 65:664-670.
-
(2004)
Appl Microbiol Biotechnol
, vol.65
, pp. 664-670
-
-
Urbance, S.E.1
Pometto, A.L.2
DiSpirito, A.A.3
Denli, Y.4
-
40
-
-
84880843285
-
Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants
-
US5573931A.
-
Guettler MV, Jain MK, Rumler D: Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US patent 1996, US5573931A.
-
(1996)
US patent
-
-
Guettler, M.V.1
Jain, M.K.2
Rumler, D.3
-
41
-
-
4644247295
-
Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions
-
Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A.A., Yukawa H. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microb Biotech 2004, 7:182-196.
-
(2004)
J Mol Microb Biotech
, vol.7
, pp. 182-196
-
-
Inui, M.1
Murakami, S.2
Okino, S.3
Kawaguchi, H.4
Vertès, A.A.5
Yukawa, H.6
-
42
-
-
84861139695
-
Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate
-
Litsanov B., Brocker M., Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 2012, 78:3325-3337.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 3325-3337
-
-
Litsanov, B.1
Brocker, M.2
Bott, M.3
-
43
-
-
77952889404
-
Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation
-
Jojima T., Fujii M., Mori E., Inui M., Yukawa H. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl Microbiol Biotechnol 2010, 87:159-165.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 159-165
-
-
Jojima, T.1
Fujii, M.2
Mori, E.3
Inui, M.4
Yukawa, H.5
-
44
-
-
84896950088
-
Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system
-
Zhu N., Xia H., Yang J., Zhao X., Chen T. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Biotechnol Lett 2014, 36:553-560.
-
(2014)
Biotechnol Lett
, vol.36
, pp. 553-560
-
-
Zhu, N.1
Xia, H.2
Yang, J.3
Zhao, X.4
Chen, T.5
-
45
-
-
83655197763
-
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum
-
Litsanov B., Kabus A., Brocker M., Bott M. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 2012, 5:116-128.
-
(2012)
Microb Biotechnol
, vol.5
, pp. 116-128
-
-
Litsanov, B.1
Kabus, A.2
Brocker, M.3
Bott, M.4
-
46
-
-
84875981840
-
Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum
-
Zhu N., Xia H., Wang Z., Zhao X., Chen T. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PloS One 2013, 8:e60659.
-
(2013)
PloS One
, vol.8
, pp. e60659
-
-
Zhu, N.1
Xia, H.2
Wang, Z.3
Zhao, X.4
Chen, T.5
-
47
-
-
84929096560
-
Method of manufacturing succinic acid and ammonium succinate solutions
-
US8034975B2.
-
Nishi K, Kaneko H, Tasaki H, Koga M, Tanegawa T, Furuya S, Fujiwara K, Sato T: Method of manufacturing succinic acid and ammonium succinate solutions. US patent 2011, US8034975B2.
-
(2011)
US patent
-
-
Nishi, K.1
Kaneko, H.2
Tasaki, H.3
Koga, M.4
Tanegawa, T.5
Furuya, S.6
Fujiwara, K.7
Sato, T.8
-
48
-
-
84943604629
-
Systems strategies for developing industrial microbial strains
-
Lee S.Y., Kim H.U. Systems strategies for developing industrial microbial strains. Nat Biotechnol 2015, 33:1061-1072.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1061-1072
-
-
Lee, S.Y.1
Kim, H.U.2
-
49
-
-
85049326832
-
Fermentation of glycerol to organic acids
-
US20140234923A1. A glycerol utilizing E. coli mutant strain was developed by Myriant for the enhanced production of SA.
-
Yocum RR, Hermann T, Hu X: Fermentation of glycerol to organic acids. US patent 2014, US20140234923A1. A glycerol utilizing E. coli mutant strain was developed by Myriant for the enhanced production of SA.
-
(2014)
US patent
-
-
Yocum, R.R.1
Hermann, T.2
Hu, X.3
-
50
-
-
84965072879
-
Process for the crystallization of succinic acid
-
US20150057425A1.
-
Van De Graaf MJ, Valianpoer F, Fiey G, Delattre L, Schulten EAM: Process for the crystallization of succinic acid. US patent 2015, US20150057425A1.
-
(2015)
US patent
-
-
Van De Graaf, M.J.1
Valianpoer, F.2
Fiey, G.3
Delattre, L.4
Schulten, E.A.M.5
-
51
-
-
84906269284
-
Microbial succinic acid producers and purification of succinic acid
-
US8673598B2.
-
Schroder H, Haefner S, Von Abendroth G, Hollmann R, Raddatz A, Ernst H, Gurski H: Microbial succinic acid producers and purification of succinic acid. US patent 2014, US8673598B2.
-
(2014)
US patent
-
-
Schroder, H.1
Haefner, S.2
Von Abendroth, G.3
Hollmann, R.4
Raddatz, A.5
Ernst, H.6
Gurski, H.7
-
52
-
-
29144484729
-
Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
-
Lee S.J., Lee D.-Y., Kim T.Y., Kim B.H., Lee J., Lee S.Y. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 2005, 71:7880-7887.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 7880-7887
-
-
Lee, S.J.1
Lee, D.-Y.2
Kim, T.Y.3
Kim, B.H.4
Lee, J.5
Lee, S.Y.6
-
53
-
-
84884791723
-
Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
-
Ask M., Mapelli V., Hock H., Olsson L., Bettiga M. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 2013, 12:87.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 87
-
-
Ask, M.1
Mapelli, V.2
Hock, H.3
Olsson, L.4
Bettiga, M.5
-
54
-
-
83155185017
-
Dicarboxylic acid production by fermentation at low pH
-
US20110229945A1.
-
Jansen MLA, Verwaal R: Dicarboxylic acid production by fermentation at low pH. US patent 2011, US20110229945A1.
-
(2011)
US patent
-
-
Jansen, M.L.A.1
Verwaal, R.2
-
56
-
-
85051086210
-
Metabolic evolution of Escherichia coli strains that produce organic acids
-
US20120202259A1.
-
Grabar T, Gong W, Yocum RR: Metabolic evolution of Escherichia coli strains that produce organic acids. US patent 2012, US20120202259A1.
-
(2012)
US patent
-
-
Grabar, T.1
Gong, W.2
Yocum, R.R.3
-
57
-
-
84991575927
-
Bacterial strain and process for the fermentative production of organic acids
-
US8574875B2.
-
Scholten E, Dägele D, Haefner S, Schröder H: Bacterial strain and process for the fermentative production of organic acids. US patent 2013, US8574875B2.
-
(2013)
US patent
-
-
Scholten, E.1
Dägele, D.2
Haefner, S.3
Schröder, H.4
-
59
-
-
84960914068
-
Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid
-
US8877466B2.
-
Scholten E, Haefner S, Schröder H: Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid. US patent 2014, US8877466B2.
-
(2014)
US patent
-
-
Scholten, E.1
Haefner, S.2
Schröder, H.3
-
60
-
-
84960891050
-
Process for producing succinic acid
-
EP1672077B1.
-
Murase M, Aoyama R, Ikuta M, Yamagishi K, Moriya M, Nakamura J, Kojima H: Process for producing succinic acid. EP patent 2015, EP1672077B1.
-
(2015)
EP patent
-
-
Murase, M.1
Aoyama, R.2
Ikuta, M.3
Yamagishi, K.4
Moriya, M.5
Nakamura, J.6
Kojima, H.7
|