-
1
-
-
84857455219
-
-
Bus Horiz. "Kelley School of Business, Indiana University"
-
Berman B. 3-D printing: The new industrial revolution. Bus Horiz. "Kelley School of Business, Indiana University"; 2012; 55: 155-162. doi: 10.1016/j.bushor.2011.11.003
-
(2012)
3-D Printing: The New Industrial Revolution
, vol.55
, pp. 155-162
-
-
Berman, B.1
-
2
-
-
84945345894
-
Additive manufacturing As a disruptive technology: Implications of three-dimensional printing
-
Campbell TA, Ivanova OS. Additive Manufacturing As a Disruptive Technology: Implications of Three-Dimensional Printing. Technol Innov. 2013; 15: 67-79. doi: 10.3727/194982413X13608676060655
-
(2013)
Technol Innov.
, vol.15
, pp. 67-79
-
-
Campbell, T.A.1
Ivanova, O.S.2
-
3
-
-
84883865303
-
A review of additive manufacturing
-
Wong KV, Hernandez A. A Review of Additive Manufacturing. ISRN Mech Eng. 2012; 2012: 1-10. doi: 10.5402/2012/208760
-
(2012)
ISRN Mech Eng.
, vol.2012
, pp. 1-10
-
-
Wong, K.V.1
Hernandez, A.2
-
4
-
-
0032188397
-
A comparison of rapid prototyping technologies
-
Pham D, Gault R. A comparison of rapid prototyping technologies. Int J Mach Tools Manuf. 1998; 38: 1257-1287. doi: 10.1016/S0890-6955(97)00137-5
-
(1998)
Int J Mach Tools Manuf.
, vol.38
, pp. 1257-1287
-
-
Pham, D.1
Gault, R.2
-
6
-
-
84888008047
-
Additive manufacturing in the spare parts supply chain
-
Khajavi SH, Partanen J, Holmström J. Additive manufacturing in the spare parts supply chain. Comput Ind. 2014; 65: 50-63. doi: 10.1016/j.compind.2013.07.008
-
(2014)
Comput Ind.
, vol.65
, pp. 50-63
-
-
Khajavi, S.H.1
Partanen, J.2
Holmström, J.3
-
8
-
-
77951848161
-
Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays
-
20308113
-
Murr LE, Gaytan SM, Medina F, Lopez H, Martinez E, Machado BI, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans A Math Phys Eng Sci. 2010; 368: 1999-2032. doi: 10.1098/rsta.2010.0010 PMID: 20308113
-
(2010)
Philos Trans A Math Phys Eng Sci.
, vol.368
, pp. 1999-2032
-
-
Murr, L.E.1
Gaytan, S.M.2
Medina, F.3
Lopez, H.4
Martinez, E.5
Machado, B.I.6
-
9
-
-
84958996973
-
-
Crump, S. S. (1992). U.S. Patent No. 5,121,329. Washington, DC: U.S. Patent and Trademark Office
-
Crump, S. S. (1992). U.S. Patent No. 5,121,329. Washington, DC: U.S. Patent and Trademark Office.
-
-
-
-
11
-
-
84911808565
-
Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering
-
Trachtenberg JE, Mountziaris PM, Miller JS, Wettergreen M, Kasper FK, Mikos AG. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. J Biomed Mater Res-Part A. 2014; 4326-4335. doi: 10.1002/jbm.a.35108
-
(2014)
J Biomed Mater Res-Part A
, pp. 4326-4335
-
-
Trachtenberg, J.E.1
Mountziaris, P.M.2
Miller, J.S.3
Wettergreen, M.4
Kasper, F.K.5
Mikos, A.G.6
-
12
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
22751181 Nature Publishing Group
-
Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. Nature Publishing Group; 2012; 11: 768-774. doi: 10.1038/nmat3357 PMID: 22751181
-
(2012)
Nat Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.-H.T.5
Cohen, D.M.6
-
13
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
24550124
-
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA., Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014; 26: 3124-3130. doi: 10.1002/adma. 201305506 PMID: 24550124
-
(2014)
Adv Mater.
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
14
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
24860845
-
Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014; 14: 2202-11. doi: 10.1039/c4lc00030g PMID: 24860845
-
(2014)
Lab Chip.
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
-
15
-
-
84958996974
-
-
Hull, C. W. (1986). U.S. Patent No. 4,575,330. Washington, DC: U.S. Patent and Trademark Office
-
Hull, C. W. (1986). U.S. Patent No. 4,575,330. Washington, DC: U.S. Patent and Trademark Office.
-
-
-
-
16
-
-
9344233837
-
Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography
-
15588392
-
Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 2004; 10: 1316-1322. doi: 10.1089/ten.2004. 10.1316 PMID: 15588392
-
(2004)
Tissue Eng.
, vol.10
, pp. 1316-1322
-
-
Dhariwala, B.1
Hunt, E.2
Boland, T.3
-
17
-
-
80053260163
-
Stereolithography-based hydrogel microenvironments to examine cellular interactions
-
Zorlutuna P, Jeong JH, Kong H, Bashir R. Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv Funct Mater. 2011; 21: 3642-3651. doi: 10.1002/adfm.201101023
-
(2011)
Adv Funct Mater.
, vol.21
, pp. 3642-3651
-
-
Zorlutuna, P.1
Jeong, J.H.2
Kong, H.3
Bashir, R.4
-
18
-
-
33748960111
-
Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells
-
16897421
-
Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng. 2006; 34: 1429-1441. doi: 10.1007/s10439-006-9156-y PMID: 16897421
-
(2006)
Ann Biomed Eng.
, vol.34
, pp. 1429-1441
-
-
Arcaute, K.1
Mann, B.K.2
Wicker, R.B.3
-
19
-
-
75149183094
-
Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds
-
19683602 Acta Materialia Inc.
-
Arcaute K, Mann B, Wicker R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. Acta Materialia Inc.; 2010; 6: 1047-1054. doi: 10.1016/j.actbio. 2009.08.017 PMID: 19683602
-
(2010)
Acta Biomater
, vol.6
, pp. 1047-1054
-
-
Arcaute, K.1
Mann, B.2
Wicker, R.3
-
20
-
-
84958996975
-
-
Deckard, C. R. (1989). U.S. Patent No. 4,863,538. Washington, DC: U.S. Patent and Trademark Office
-
Deckard, C. R. (1989). U.S. Patent No. 4,863,538. Washington, DC: U.S. Patent and Trademark Office.
-
-
-
-
21
-
-
84958996976
-
-
Beaman, J. J., & Deckard, C. R. (1990). U.S. Patent No. 4,938,816. Washington, DC: U.S. Patent and Trademark Office
-
Beaman, J. J., & Deckard, C. R. (1990). U.S. Patent No. 4,938,816. Washington, DC: U.S. Patent and Trademark Office.
-
-
-
-
22
-
-
77953208014
-
Consolidation of polymer powders by selective laser sintering
-
Kruth J, Levy G, Schindel R, Craeghs T, Yasa E. Consolidation of Polymer Powders by Selective Laser Sintering. Int Conf Polym Mould Innov. 2008; 15-30.
-
(2008)
Int Conf Polym Mould Innov.
, pp. 15-30
-
-
Kruth, J.1
Levy, G.2
Schindel, R.3
Craeghs, T.4
Yasa, E.5
-
23
-
-
36248967584
-
Ceramic components manufacturing by selective laser sintering
-
Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I. Ceramic components manufacturing by selective laser sintering. Appl Surf Sci. 2007; 254: 989-992. doi: 10.1016/j.apsusc.2007.08.085
-
(2007)
Appl Surf Sci.
, vol.254
, pp. 989-992
-
-
Bertrand, P.1
Bayle, F.2
Combe, C.3
Goeuriot, P.4
Smurov, I.5
-
24
-
-
0029229906
-
Direct selective laser sintering of metals
-
Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct Selective Laser Sintering of Metals. Rapid Prototyp J. 1995; 1: 26-36. http://dx.doi.org/10.1108/17506200710779521
-
(1995)
Rapid Prototyp J.
, vol.1
, pp. 26-36
-
-
Agarwala, M.1
Bourell, D.2
Beaman, J.3
Marcus, H.4
Barlow, J.5
-
25
-
-
0042785192
-
On the development of direct metal laser sintering for rapid tooling
-
Simchi A, Petzoldt F, Pohl H. On the development of direct metal laser sintering for rapid tooling. J Mater Process Technol. 2003; 141: 319-328. doi: 10.1016/S0924-0136(03)00283-8
-
(2003)
J Mater Process Technol.
, vol.141
, pp. 319-328
-
-
Simchi, A.1
Petzoldt, F.2
Pohl, H.3
-
26
-
-
84937943461
-
A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing
-
IOP Publishing
-
Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. IOP Publishing; 2015; 16: 033502. doi: 10.1088/1468-6996/16/3/033502
-
(2015)
Sci Technol Adv Mater
, vol.16
, pp. 033502
-
-
Shirazi, S.F.S.1
Gharehkhani, S.2
Mehrali, M.3
Yarmand, H.4
Metselaar, H.S.C.5
Adib Kadri, N.6
-
27
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
16003400
-
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005; 4: 518-524. doi: 10.1038/nmat1683 PMID: 16003400
-
(2005)
Nat Mater.
, vol.4
, pp. 518-524
-
-
Hollister, S.J.1
-
28
-
-
8144227180
-
Rapid prototyping in tissue engineering: Challenges and potential
-
15542155
-
Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004; 22: 643-652. doi: 10.1016/j.tibtech.2004.10.004 PMID: 15542155
-
(2004)
Trends Biotechnol
, vol.22
, pp. 643-652
-
-
Yeong, W.-Y.1
Chua, C.-K.2
Leong, K.-F.3
Chandrasekaran, M.4
-
29
-
-
33750923123
-
Fabrication of polymer scaffolds for tissue engineering using surface selective laser sintering
-
Antonov EN, Bagratashvili VN, Howdle SM, Konovalov AN, Popov VK, Panchenko VY. Fabrication of polymer scaffolds for tissue engineering using surface selective laser sintering. Laser Phys. 2006; 16: 774-787. doi: 10.1134/S1054660X06050070
-
(2006)
Laser Phys.
, vol.16
, pp. 774-787
-
-
Antonov, E.N.1
Bagratashvili, V.N.2
Howdle, S.M.3
Konovalov, A.N.4
Popov, V.K.5
Panchenko, V.Y.6
-
30
-
-
84870503249
-
Effect of process parameters on the properties of selective laser sintered poly(3-hydroxybutyrate) scaffolds for bone tissue engineering
-
Pereira TF, Silva MAC, Oliveira MF, Maia IA, Silva JVL, Costa MF, et al. Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering. Virtual Phys Prototyp. 2012; 7: 275-285. doi: 10.1080/17452759.2012.738551
-
(2012)
Virtual Phys Prototyp
, vol.7
, pp. 275-285
-
-
Pereira, T.F.1
Silva, M.A.C.2
Oliveira, M.F.3
Maia, I.A.4
Silva, J.V.L.5
Costa, M.F.6
-
31
-
-
14844322862
-
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
-
15763261
-
Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005; 26: 4817-4827. doi: 10.1016/j.biomaterials.2004.11.057 PMID: 15763261
-
(2005)
Biomaterials
, vol.26
, pp. 4817-4827
-
-
Williams, J.M.1
Adewunmi, A.2
Schek, R.M.3
Flanagan, C.L.4
Krebsbach, P.H.5
Feinberg, S.E.6
-
32
-
-
84929642920
-
Manufacturing of porous polycaprolactone prepared with different particle sizes and infrared laser sintering conditions: Microstructure and mechanical properties
-
2014
-
Salmoria G, Hotza D, Klauss P, Kanis LA, Roesler CRM. Manufacturing of Porous Polycaprolactone Prepared with Different Particle Sizes and Infrared Laser Sintering Conditions: Microstructure and Mechanical Properties. Adv Mech Eng. 2014; 2014.
-
(2014)
Adv Mech Eng.
-
-
Salmoria, G.1
Hotza, D.2
Klauss, P.3
Kanis, L.A.4
Roesler, C.R.M.5
-
33
-
-
79953877842
-
Fabrication of tissue engineered PCL scaffold by selective laser-sintered machine for osteogeneisis of adipose-derived stem cells
-
Liao H-T, Chang K-H, Jiang Y, Chen J-P, Lee M-Y. Fabrication of tissue engineered PCL scaffold by selective laser-sintered machine for osteogeneisis of adipose-derived stem cells. Virtual Phys Prototyp. 2011; 6: 57-60. doi: 10.1080/17452759.2011.559742
-
(2011)
Virtual Phys Prototyp
, vol.6
, pp. 57-60
-
-
Liao, H.-T.1
Chang, K.-H.2
Jiang, Y.3
Chen, J.-P.4
Lee, M.-Y.5
-
34
-
-
84855521636
-
A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering
-
Lohfeld S. A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. Journal of Biomedical Science and Engineering. 2010. pp. 138-147. doi: 10.4236/jbise.2010.32019
-
(2010)
Journal of Biomedical Science and Engineering
, pp. 138-147
-
-
Lohfeld, S.1
-
35
-
-
33745450140
-
Selective laser sintering process optimization for layered manufacturing of CAPA16501 polycaprolactone bone tissue engineering scaffolds
-
Partee B, Hollister SJ, Das S. Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA16501 Polycaprolactone Bone Tissue Engineering Scaffolds. J Manuf Sci Eng. 2006; 128: 531. doi: 10.1115/1.2162589
-
(2006)
J Manuf Sci Eng.
, vol.128
, pp. 531
-
-
Partee, B.1
Hollister, S.J.2
Das, S.3
-
36
-
-
77955884686
-
Mechanical and microstructural properties of polycaprolactone scaffolds with onedimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering
-
20144914 Acta Materialia Inc.
-
Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with onedimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. Acta Materialia Inc.; 2010; 6: 2467-2476. doi: 10.1016/j.actbio.2010.02.002 PMID: 20144914
-
(2010)
Acta Biomater
, vol.6
, pp. 2467-2476
-
-
Eshraghi, S.1
Das, S.2
-
37
-
-
79959242988
-
Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system
-
21642759
-
Shuai C, Gao C, Nie Y, Hu H, Zhou Y, Peng S. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology. 2011; 22: 285703. doi: 10.1088/0957-4484/22/28/285703 PMID: 21642759
-
(2011)
Nanotechnology
, vol.22
, pp. 285703
-
-
Shuai, C.1
Gao, C.2
Nie, Y.3
Hu, H.4
Zhou, Y.5
Peng, S.6
-
38
-
-
82055184127
-
Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering
-
21636879
-
Kolan KCR, Leu MC, Hilmas GE, Brown RF, Velez M. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication. 2011; 3: 025004. doi: 10.1088/1758-5082/3/2/025004 PMID: 21636879
-
(2011)
Biofabrication
, vol.3
, pp. 025004
-
-
Kolan, K.C.R.1
Leu, M.C.2
Hilmas, G.E.3
Brown, R.F.4
Velez, M.5
-
39
-
-
33846861764
-
Biological evaluation of an apatite-mullite glassceramic produced via selective laser sintering
-
17215172
-
Goodridge RD, Wood DJ, Ohtsuki C, Dalgarno KW. Biological evaluation of an apatite-mullite glassceramic produced via selective laser sintering. Acta Biomater. 2007; 3: 221-231. doi: 10.1016/j.actbio. 2006.10.005 PMID: 17215172
-
(2007)
Acta Biomater
, vol.3
, pp. 221-231
-
-
Goodridge, R.D.1
Wood, D.J.2
Ohtsuki, C.3
Dalgarno, K.W.4
-
40
-
-
33751346057
-
Poly-∈-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
-
17055789
-
Wiria FE, Leong KF, Chua CK, Liu Y. Poly-∈-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007; 3: 1-12. doi: 10.1016/j.actbio.2006. 07.008 PMID: 17055789
-
(2007)
Acta Biomater
, vol.3
, pp. 1-12
-
-
Wiria, F.E.1
Leong, K.F.2
Chua, C.K.3
Liu, Y.4
-
41
-
-
77955868224
-
Selective laser sintering of hydroxyapatite/poly-∈-caprolactone scaffolds
-
19616649 Acta Materialia Inc.
-
Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly-∈-caprolactone scaffolds. Acta Biomater. Acta Materialia Inc.; 2010; 6: 2511-2517. doi: 10.1016/j.actbio.2009.07. 018 PMID: 19616649
-
(2010)
Acta Biomater
, vol.6
, pp. 2511-2517
-
-
Eosoly, S.1
Brabazon, D.2
Lohfeld, S.3
Looney, L.4
-
42
-
-
72949101766
-
Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres
-
17619975
-
Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY. Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med. 2008; 19: 2535-2540. doi: 10.1007/s10856-007-3089-3 PMID: 17619975
-
(2008)
J Mater Sci Mater Med.
, vol.19
, pp. 2535-2540
-
-
Zhou, W.Y.1
Lee, S.H.2
Wang, M.3
Cheung, W.L.4
Ip, W.Y.5
-
43
-
-
0041670837
-
Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
-
12895584
-
Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, et al. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials. 2003; 24: 3115-3123. doi: 10.1016/S0142-9612(03)00131-5 PMID: 12895584
-
(2003)
Biomaterials
, vol.24
, pp. 3115-3123
-
-
Tan, K.H.1
Chua, C.K.2
Leong, K.F.3
Cheah, C.M.4
Cheang, P.5
Abu Bakar, M.S.6
-
44
-
-
36349030367
-
-
Hao L, Savalani MM, Zhang Y, Tanner KE, Heath RJ, Harris RA. Characterization of selective laser sintered hydroxyapatite based biocomposite structures for bone replacement. 2007; 1857-1869. doi: 10.1098/rspa.2007.1854
-
(2007)
Characterization of Selective Laser Sintered Hydroxyapatite Based Biocomposite Structures for Bone Replacement
, pp. 1857-1869
-
-
Hao, L.1
Savalani, M.M.2
Zhang, Y.3
Tanner, K.E.4
Heath, R.J.5
Harris, R.A.6
-
45
-
-
84859931713
-
Three-dimensionally printed polycaprolactone and B-tricalcium phosphate scaffolds for bone tissue engineering: An in vitro study
-
Elsevier Inc.
-
Sharaf B, Faris CB, Abukawa H, Susarla SM, Vacanti JP, Kaban LB, et al. Three-dimensionally printed polycaprolactone and B-tricalcium phosphate scaffolds for bone tissue engineering: An in vitro study. J Oral Maxillofac Surg. Elsevier Inc.; 2012; 70: 647-656. doi: 10.1016/j.joms.2011.07.029
-
(2012)
J Oral Maxillofac Surg.
, vol.70
, pp. 647-656
-
-
Sharaf, B.1
Faris, C.B.2
Abukawa, H.3
Susarla, S.M.4
Vacanti, J.P.5
Kaban, L.B.6
-
46
-
-
84898612262
-
Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling
-
24057867
-
Doyle H, Lohfeld S, McHugh P. Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling. Ann Biomed Eng. 2014; 42: 661-77. doi: 10.1007/s10439-013-0913-4 PMID: 24057867
-
(2014)
Ann Biomed Eng.
, vol.42
, pp. 661-677
-
-
Doyle, H.1
Lohfeld, S.2
McHugh, P.3
-
47
-
-
84898455713
-
Selective laser sintering of PCL/TCP composites for tissue engineering scaffolds
-
Chung H, Jee H, Das S. Selective laser sintering of PCL/TCP composites for tissue engineering scaffolds. J Mech Sci Technol. 2010; 24: 241-244. doi: 10.1007/s12206-009-1141-6
-
(2010)
J Mech Sci Technol.
, vol.24
, pp. 241-244
-
-
Chung, H.1
Jee, H.2
Das, S.3
-
48
-
-
84877995448
-
Bioresorbable airway splint created with a three-dimensional printer
-
23697530
-
Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable Airway Splint Created with a Three-Dimensional Printer. N Engl J Med. 2013; 368: 2042-3. doi: 10.1056/NEJMc1206319 PMID: 23697530
-
(2013)
N Engl J Med.
, vol.368
, pp. 2042-2043
-
-
Zopf, D.A.1
Hollister, S.J.2
Nelson, M.E.3
Ohye, R.G.4
Green, G.E.5
-
49
-
-
84929483920
-
Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients
-
Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015; 7: 1-11.
-
(2015)
Sci Transl Med.
, vol.7
, pp. 1-11
-
-
Morrison, R.J.1
Hollister, S.J.2
Niedner, M.F.3
Mahani, M.G.4
Park, A.H.5
Mehta, D.K.6
-
50
-
-
64749107970
-
Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors
-
19300443
-
Kutner RH, Zhang X-Y, Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc. 2009; 4: 495-505. doi: 10.1038/nprot.2009.22 PMID: 19300443
-
(2009)
Nat Protoc.
, vol.4
, pp. 495-505
-
-
Kutner, R.H.1
Zhang, X.-Y.2
Reiser, J.3
-
51
-
-
68549101526
-
Multiple factor interactions in biomimetic mineralization of electrospun scaffolds
-
19595456 Elsevier Ltd
-
Madurantakam PA., Rodriguez IA., Cost CP, Viswanathan R, Simpson DG, Beckman MJ, et al. Multiple factor interactions in biomimetic mineralization of electrospun scaffolds. Biomaterials. Elsevier Ltd; 2009; 30: 5456-5464. doi: 10.1016/j.biomaterials.2009.06.043 PMID: 19595456
-
(2009)
Biomaterials
, vol.30
, pp. 5456-5464
-
-
Madurantakam, P.A.1
Rodriguez, I.A.2
Cost, C.P.3
Viswanathan, R.4
Simpson, D.G.5
Beckman, M.J.6
-
52
-
-
36248993514
-
Consolidation phenomena in laser and powder-bed based layered manufacturing
-
Kruth JP, Levy G, Klocke F, Childs THC. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann-Manuf Technol. 2007; 56: 730-759. doi: 10.1016/j.cirp.2007.10.004
-
(2007)
CIRP Ann-Manuf Technol.
, vol.56
, pp. 730-759
-
-
Kruth, J.P.1
Levy, G.2
Klocke, F.3
Childs, T.H.C.4
-
53
-
-
79961066293
-
Humanized mice with ectopic artificial liver tissues
-
21746904
-
Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN. Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci U S A. 2011; 108: 11842-11847. doi: 10.1073/pnas.1101791108 PMID: 21746904
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 11842-11847
-
-
Chen, A.A.1
Thomas, D.K.2
Ong, L.L.3
Schwartz, R.E.4
Golub, T.R.5
Bhatia, S.N.6
-
54
-
-
84907311604
-
Part and material properties in selective laser melting of metals
-
Kruth J, Badrossamay M, Yasa E, Deckers J, Thijs L, Humbeeck J Van. Part and material properties in selective laser melting of metals. 16th Int Symp Electromachining. 2010; 1-12.
-
(2010)
16th Int Symp Electromachining
, pp. 1-12
-
-
Kruth, J.1
Badrossamay, M.2
Yasa, E.3
Deckers, J.4
Thijs, L.5
Van Humbeeck, J.6
-
55
-
-
67349175254
-
Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods
-
Elsevier Ltd
-
Gu D, Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des. Elsevier Ltd; 2009; 30: 2903-2910. doi: 10.1016/j. matdes.2009.01.013
-
(2009)
Mater Des.
, vol.30
, pp. 2903-2910
-
-
Gu, D.1
Shen, Y.2
-
56
-
-
33144466032
-
Three-dimensional modeling of selective laser sintering of two-component metal powder layers
-
Chen T, Zhang Y. Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers. J Manuf Sci Eng. 2006; 128: 299. doi: 10.1115/1.2122947
-
(2006)
J Manuf Sci Eng.
, vol.128
, pp. 299
-
-
Chen, T.1
Zhang, Y.2
-
57
-
-
84856412307
-
Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering
-
Elsevier Ltd
-
Salmoria GV, Leite JL, Vieira LF, Pires ATN, Roesler CRM. Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering. Polym Test. Elsevier Ltd; 2012; 31: 411-416. doi: 10.1016/j.polymertesting.2011.12.006
-
(2012)
Polym Test
, vol.31
, pp. 411-416
-
-
Salmoria, G.V.1
Leite, J.L.2
Vieira, L.F.3
Pires, A.T.N.4
Roesler, C.R.M.5
-
58
-
-
2942607507
-
Selective laser melting of iron-based powder
-
Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. J Mater Process Technol. 2004; 149: 616-622. doi: 10.1016/j.jmatprotec.2003. 11.051
-
(2004)
J Mater Process Technol.
, vol.149
, pp. 616-622
-
-
Kruth, J.P.1
Froyen, L.2
Van Vaerenbergh, J.3
Mercelis, P.4
Rombouts, M.5
Lauwers, B.6
-
59
-
-
0033299594
-
Numerical prediction of temperature and density distributions in selective laser sintering processes
-
Cervera GBM, Lombera G. Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyp J. 1999; 5: 21-26. http://dx.doi.org/10.1108/17506200710779521
-
(1999)
Rapid Prototyp J.
, vol.5
, pp. 21-26
-
-
Cervera, G.B.M.1
Lombera, G.2
-
60
-
-
0033985202
-
Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: In vitro and in vivo validation
-
10636285
-
Binder TM, Moertl D, Mundigler G, Rehak G, Franke M, Delle-Karth G, et al. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: In vitro and in vivo validation. J Am Coll Cardiol. 2000; 35: 230-237. doi: 10.1016/S0735-1097(99)00498-2 PMID: 10636285
-
(2000)
J Am Coll Cardiol.
, vol.35
, pp. 230-237
-
-
Binder, T.M.1
Moertl, D.2
Mundigler, G.3
Rehak, G.4
Franke, M.5
Delle-Karth, G.6
-
61
-
-
0033998729
-
Custom cranioplasty using stereolithography and acrylic
-
10738323
-
D'Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ, et al. Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg. 2000; 53: 200-204. doi: 10.1054/bjps.1999. 3268 PMID: 10738323
-
(2000)
Br J Plast Surg.
, vol.53
, pp. 200-204
-
-
D'Urso, P.S.1
Earwaker, W.J.2
Barker, T.M.3
Redmond, M.J.4
Thompson, R.G.5
Effeney, D.J.6
-
62
-
-
9644295786
-
Prospective study on cranioplasty with individual carbon fiber reinforced polymere (CFRP) implants produced by means of stereolithography
-
15576119
-
Wurm G, Tomancok B, Holl K, Trenkler J. Prospective study on cranioplasty with individual carbon fiber reinforced polymere (CFRP) implants produced by means of stereolithography. Surg Neurol. 2004; 62: 510-521. doi: 10.1016/j.surneu.2004.01.025 PMID: 15576119
-
(2004)
Surg Neurol.
, vol.62
, pp. 510-521
-
-
Wurm, G.1
Tomancok, B.2
Holl, K.3
Trenkler, J.4
-
63
-
-
84856086092
-
3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results-our experience in 16 cases
-
Elsevier Ltd
-
Aboul-Hosn Centenero S, Hernández-Alfaro F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results-Our experience in 16 cases. J Cranio-Maxillofacial Surg. Elsevier Ltd; 2012; 40: 162-168. doi: 10.1016/j.jcms.2011.03.014
-
(2012)
J Cranio-Maxillofacial Surg
, vol.40
, pp. 162-168
-
-
Aboul-Hosn Centenero, S.1
Hernández-Alfaro, F.2
-
64
-
-
39049098038
-
3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: A preliminary study
-
17925319
-
Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008; 7: 6-9. doi: 10.1510/icvts.2007.156588 PMID: 17925319
-
(2008)
Interact Cardiovasc Thorac Surg.
, vol.7
, pp. 6-9
-
-
Jacobs, S.1
Grunert, R.2
Mohr, F.W.3
Falk, V.4
-
65
-
-
59649092875
-
A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps
-
19179046
-
Leiggener C, Messo E, Thor a., Zeilhofer HF, Hirsch JM. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg. 2009; 38: 187-192. doi: 10.1016/j.ijom.2008.11.026 PMID: 19179046
-
(2009)
Int J Oral Maxillofac Surg
, vol.38
, pp. 187-192
-
-
Leiggener, C.1
Messo, E.2
Thor, A.3
Zeilhofer, H.F.4
Hirsch, J.M.5
-
66
-
-
84927563357
-
Color-coded patient-specific physical models of congenital heart disease
-
J R, M H, L S, M F, M O
-
Ejaz F, J R, M H, L S, M F, M O, et al. Color-coded Patient-specific Physical Models of Congenital Heart Disease. Rapid Prototyp J. 2014; 20: 336-343.
-
(2014)
Rapid Prototyp J.
, vol.20
, pp. 336-343
-
-
Ejaz, F.1
-
67
-
-
84944043597
-
Three dimensional model for surgical planning in resection of thoracic tumors
-
26453940 Surgical Associates Ltd
-
Kim MP, Ta AH, Ellsworth WA., Marco RA, Gaur P, Miller JS. Three dimensional model for surgical planning in resection of thoracic tumors. Int J Surg Case Rep. Surgical Associates Ltd; 2015; 16: 127-129. doi: 10.1016/j.ijscr.2015.09.037 PMID: 26453940
-
(2015)
Int J Surg Case Rep.
, vol.16
, pp. 127-129
-
-
Kim, M.P.1
Ta, A.H.2
Ellsworth, W.A.3
Marco, R.A.4
Gaur, P.5
Miller, J.S.6
-
68
-
-
84884357409
-
Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers
-
Elsevier Ltd
-
Wittbrodt BT, Glover AG, Laureto J, Anzalone GC, Oppliger D, Irwin JL, et al. Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics. Elsevier Ltd; 2013; 23: 713-726. doi: 10.1016/j.mechatronics.2013.06.002
-
(2013)
Mechatronics
, vol.23
, pp. 713-726
-
-
Wittbrodt, B.T.1
Glover, A.G.2
Laureto, J.3
Anzalone, G.C.4
Oppliger, D.5
Irwin, J.L.6
-
69
-
-
0027929725
-
Linear and geometric accuracies from layer manufacturing
-
Childs THC, Juster NP. Linear and Geometric Accuracies from Layer Manufacturing. CIRP Ann-Manuf Technol. 1994; 43: 163-166. doi: 10.1016/S0007-8506(07)62187-8
-
(1994)
CIRP Ann-Manuf Technol.
, vol.43
, pp. 163-166
-
-
Childs, T.H.C.1
Juster, N.P.2
-
70
-
-
0030982950
-
Preliminary experience with medical applications of rapid prototyping by selective laser sintering
-
9140877
-
Berry E, Brown JM, Connell M, Craven CM, Efford ND, Radjenovic A, et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys. 1997; 19: 90-96. doi: 10.1016/S1350-4533(96)00039-2 PMID: 9140877
-
(1997)
Med Eng Phys.
, vol.19
, pp. 90-96
-
-
Berry, E.1
Brown, J.M.2
Connell, M.3
Craven, C.M.4
Efford, N.D.5
Radjenovic, A.6
-
71
-
-
79952009295
-
The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation
-
Elsevier Ltd
-
Gittens RA., McLachlan, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. Elsevier Ltd; 2011; 32: 3395-3403. doi: 10.1016/j.biomaterials.2011.01. 029
-
(2011)
Biomaterials
, vol.32
, pp. 3395-3403
-
-
Gittens, R.A.1
McLachlan2
Olivares-Navarrete, R.3
Cai, Y.4
Berner, S.5
Tannenbaum, R.6
-
72
-
-
84906779452
-
Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients
-
25106771 Elsevier Ltd
-
Faia-Torres AB, Guimond-Lischer S, Rottmar M, Charnley M, Goren T, Maniura-Weber K, et al. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials. Elsevier Ltd; 2014; 35: 9023-9032. doi: 10.1016/j.biomaterials.2014.07.015 PMID: 25106771
-
(2014)
Biomaterials
, vol.35
, pp. 9023-9032
-
-
Faia-Torres, A.B.1
Guimond-Lischer, S.2
Rottmar, M.3
Charnley, M.4
Goren, T.5
Maniura-Weber, K.6
-
73
-
-
80053102721
-
The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials
-
21872326 Elsevier Ltd
-
Hu X, Park SH, Gil ES, Xia XX, Weiss AS, Kaplan DL. The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials. Elsevier Ltd; 2011; 32: 8979-8989. doi: 10.1016/j.biomaterials.2011.08.037 PMID: 21872326
-
(2011)
Biomaterials
, vol.32
, pp. 8979-8989
-
-
Hu, X.1
Park, S.H.2
Gil, E.S.3
Xia, X.X.4
Weiss, A.S.5
Kaplan, D.L.6
-
74
-
-
19044400967
-
Selective laser sintering: Applications and technological capabilities
-
Pham DT, Dimov S, Lacan F. Selective laser sintering: Applications and technological capabilities. Proc Inst Mech Eng Part B J Eng Manuf. 1999; 213: 435-449. doi: 10.1243/0954405991516912
-
(1999)
Proc Inst Mech Eng Part B J Eng Manuf.
, vol.213
, pp. 435-449
-
-
Pham, D.T.1
Dimov, S.2
Lacan, F.3
-
75
-
-
0037376632
-
Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication
-
12527290
-
Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials. 2003; 24: 1487-1497. doi: 10.1016/S0142-9612(02)00528-8 PMID: 12527290
-
(2003)
Biomaterials
, vol.24
, pp. 1487-1497
-
-
Sachlos, E.1
Reis, N.2
Ainsley, C.3
Derby, B.4
Czernuszka, J.T.5
-
76
-
-
0038545277
-
Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly
-
12690401
-
Therriault D, White SR, Lewis JA. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater. 2003; 2: 265-271. doi: 10.1038/nmat863 PMID: 12690401
-
(2003)
Nat Mater.
, vol.2
, pp. 265-271
-
-
Therriault, D.1
White, S.R.2
Lewis, J.A.3
-
77
-
-
84879200963
-
Flow diverter effect on cerebral aneurysm hemodynamics: An in vitro comparison of telescoping stents and the pipeline
-
23515661
-
Roszelle BN, Gonzalez LF, Babiker MH, Ryan J, Albuquerque FC, Frakes DH. Flow diverter effect on cerebral aneurysm hemodynamics: An in vitro comparison of telescoping stents and the Pipeline. Neuroradiology. 2013; 55: 751-758. doi: 10.1007/s00234-013-1169-2 PMID: 23515661
-
(2013)
Neuroradiology
, vol.55
, pp. 751-758
-
-
Roszelle, B.N.1
Gonzalez, L.F.2
Babiker, M.H.3
Ryan, J.4
Albuquerque, F.C.5
Frakes, D.H.6
-
78
-
-
0034744641
-
Factors influencing blood flow patterns in the human right coronary artery
-
11284665
-
Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng. 2001; 29: 109-120. doi: 10.1114/1.1349703 PMID: 11284665
-
(2001)
Ann Biomed Eng.
, vol.29
, pp. 109-120
-
-
Myers, J.G.1
Moore, J.A.2
Ojha, M.3
Johnston, K.W.4
Ethier, C.R.5
-
79
-
-
85011095713
-
Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices
-
n/a-n/a
-
Saggiomo V, Velders AH. Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices. Adv Sci. 2015; n/a-n/a. doi: 10.1002/advs.201500125
-
(2015)
Adv Sci.
-
-
Saggiomo, V.1
Velders, A.H.2
-
80
-
-
84918595213
-
Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride
-
Elsevier
-
Karuppuswamy P, Reddy Venugopal J, Navaneethan B, Luwang Laiva A, Ramakrishna S. Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride. Mater Lett. Elsevier; 2015; 141: 180-186. doi: 10.1016/j.matlet.2014.11.044
-
(2015)
Mater Lett.
, vol.141
, pp. 180-186
-
-
Karuppuswamy, P.1
Reddy Venugopal, J.2
Navaneethan, B.3
Luwang Laiva, A.4
Ramakrishna, S.5
-
81
-
-
84862777667
-
The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery
-
22236829 Elsevier Ltd
-
Zhou L, Liang D, He X, Li J, Tan H, Li J, et al. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials. Elsevier Ltd; 2012; 33: 2734-2745. doi: 10.1016/j.biomaterials.2011.11.009 PMID: 22236829
-
(2012)
Biomaterials
, vol.33
, pp. 2734-2745
-
-
Zhou, L.1
Liang, D.2
He, X.3
Li, J.4
Tan, H.5
Li, J.6
-
82
-
-
84906785638
-
Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering
-
Thadavirul N, Pavasant P, Supaphol P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J Biomed Mater Res-Part A. 2013; 3379-3392. doi: 10.1002/jbm.a.35010
-
(2013)
J Biomed Mater Res-Part A
, pp. 3379-3392
-
-
Thadavirul, N.1
Pavasant, P.2
Supaphol, P.3
-
83
-
-
84904102458
-
Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: In vitro alendronate release behavior and local delivery effect on in vivo osteogenesis
-
24826838
-
Tarafder S, Bose S. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: In vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl Mater Interfaces. 2014; 6: 9955-9965. doi: 10.1021/am501048n PMID: 24826838
-
(2014)
ACS Appl Mater Interfaces
, vol.6
, pp. 9955-9965
-
-
Tarafder, S.1
Bose, S.2
-
84
-
-
0034580276
-
Synthetic biodegradable polymers as orthopedic devices
-
11055281
-
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000; 21: 2335-2346. doi: 10.1016/S0142-9612(00)00101-0 PMID: 11055281
-
(2000)
Biomaterials
, vol.21
, pp. 2335-2346
-
-
Middleton, J.C.1
Tipton, A.J.2
-
85
-
-
77957588918
-
The return of a forgotten polymer-polycaprolactone in the 21st century
-
Woodruff MA, Hutmacher DW. The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci. 2010; 35: 1217-1256. doi: 10.1016/j.progpolymsci.2010.04.002
-
(2010)
Prog Polym Sci.
, vol.35
, pp. 1217-1256
-
-
Woodruff, M.A.1
Hutmacher, D.W.2
-
86
-
-
64249125797
-
Engineered bimodal poly (∈-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation
-
19010746 Acta Materialia Inc.
-
Salerno A, Guarnieri D, Iannone M, Zeppetelli S, Di Maio E, Iannace S, et al. Engineered bimodal poly (∈-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation. Acta Biomater. Acta Materialia Inc.; 2009; 5: 1082-1093. doi: 10.1016/j.actbio.2008.10.012 PMID: 19010746
-
(2009)
Acta Biomater
, vol.5
, pp. 1082-1093
-
-
Salerno, A.1
Guarnieri, D.2
Iannone, M.3
Zeppetelli, S.4
Di Maio, E.5
Iannace, S.6
-
87
-
-
77956010965
-
Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds
-
20688388 Elsevier Ltd
-
Rai B, Lin JL, Lim ZXH, Guldberg RE, Hutmacher DW, Cool SM. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Biomaterials. Elsevier Ltd; 2010; 31: 7960-7970. doi: 10.1016/j.biomaterials. 2010.07.001 PMID: 20688388
-
(2010)
Biomaterials
, vol.31
, pp. 7960-7970
-
-
Rai, B.1
Lin, J.L.2
Lim, Z.X.H.3
Guldberg, R.E.4
Hutmacher, D.W.5
Cool, S.M.6
-
88
-
-
84870925320
-
Mesenchymal stem cells, osteogenic lineage and bone tissue engineering: A review [Internet]
-
Kaveh K, Ibrahim R, Abu Bakar MZ, Ibrahim TA. Mesenchymal Stem Cells, Osteogenic Lineage and Bone Tissue Engineering: A Review [Internet]. Journal of Animal and Veterinary Advances. 2011. pp. 2317-2330. doi: 10.3923/javaa.2011.2317.2330
-
(2011)
Journal of Animal and Veterinary Advances
, pp. 2317-2330
-
-
Kaveh, K.1
Ibrahim, R.2
Abu Bakar, M.Z.3
Ibrahim, T.A.4
|