-
1
-
-
80053312481
-
Autophagy and lipid metabolism coordinately modulate life span in germline-less C
-
Lapierre LR, Gelino S, Meléndez A and Hansen M: Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21: 1507-1514, 2011.
-
(2011)
Elegans. Curr Biol
, vol.21
, pp. 1507-1514
-
-
Lapierre, L.R.1
Gelino, S.2
Meléndez, A.3
Hansen, M.4
-
2
-
-
39149111914
-
Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells
-
Zeng M and Zhou JN: Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20: 659-665, 2008.
-
(2008)
Cell Signal
, vol.20
, pp. 659-665
-
-
Zeng, M.1
Zhou, J.N.2
-
3
-
-
84877341629
-
Notch signaling: Genetics and structure
-
Greenwald I and Kovall R: Notch signaling: Genetics and structure. WormBook 17: 1-28, 2013.
-
(2013)
WormBook
, vol.17
, pp. 1-28
-
-
Greenwald, I.1
Kovall, R.2
-
4
-
-
33750566665
-
Notch signaling in stem cell systems
-
Chiba S: Notch signaling in stem cell systems. Stem cells 24: 2437-2447, 2006.
-
(2006)
Stem Cells
, vol.24
, pp. 2437-2447
-
-
Chiba, S.1
-
5
-
-
33747623018
-
Notch signalling: A simple pathway becomes complex
-
Bray SJ: Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol 7: 678-689, 2006.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 678-689
-
-
Bray, S.J.1
-
7
-
-
84863250460
-
Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells
-
Chen BY, Wang X, Chen LW and Luo ZJ: Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells. Curr Drug Targets 13: 561-571, 2012.
-
(2012)
Curr Drug Targets
, vol.13
, pp. 561-571
-
-
Chen, B.Y.1
Wang, X.2
Chen, L.W.3
Luo, Z.J.4
-
8
-
-
0034663515
-
Adult rat and human bone marrow stromal cells differentiate into neurons
-
Woodbury D, Schwarz EJ, Prockop DJ and Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61: 364-370, 2000.
-
(2000)
J Neurosci Res
, vol.61
, pp. 364-370
-
-
Woodbury, D.1
Schwarz, E.J.2
Prockop, D.J.3
Black, I.B.4
-
9
-
-
84934275819
-
Efficient in vitro labeling rabbit bone marrow-derived mesenchymal stem cells with SPIO and differentiating into neural-like cells
-
Zhang R, Li J and Xie J: Efficient in vitro labeling rabbit bone marrow-derived mesenchymal stem cells with SPIO and differentiating into neural-like cells. Mol Cells 37: 650-655, 2014.
-
(2014)
Mol Cells
, vol.37
, pp. 650-655
-
-
Zhang, R.1
Li, J.2
Xie, J.3
-
10
-
-
58449135981
-
Why are MSCs therapeutic?. New data: New insight
-
Caplan AI: Why are MSCs therapeutic? New data: New insight. J Pathol 217: 318-324, 2009.
-
(2009)
J Pathol
, vol.217
, pp. 318-324
-
-
Caplan, A.I.1
-
11
-
-
84902003449
-
Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury
-
Anbari F, Khalili MA, Bahrami AR, Khoradmehr A, Sadeghian F, Fesahat F and Nabi A: Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res 9: 919-923, 2014.
-
(2014)
Neural Regen Res
, vol.9
, pp. 919-923
-
-
Anbari, F.1
Khalili, M.A.2
Bahrami, A.R.3
Khoradmehr, A.4
Sadeghian, F.5
Fesahat, F.6
Nabi, A.7
-
12
-
-
79952987670
-
MicroRNA-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by Notch signaling
-
Jing L, Jia Y, Lu J, Han R, Li J, Wang S, Peng T and Jia Y: MicroRNA-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by Notch signaling. Neuroreport 22: 206-211, 2011.
-
(2011)
Neuroreport
, vol.22
, pp. 206-211
-
-
Jing, L.1
Jia, Y.2
Lu, J.3
Han, R.4
Li, J.5
Wang, S.6
Peng, T.7
Jia, Y.8
-
13
-
-
84872585523
-
Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques
-
Hayashi T, Wakao S, Kitada M, Ose T, Watabe H, Kuroda Y, Mitsunaga K, Matsuse D, Shigemoto T, Ito A, et al: Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J Clin Invest 123: 272-284, 2013.
-
(2013)
J Clin Invest
, vol.123
, pp. 272-284
-
-
Hayashi, T.1
Wakao, S.2
Kitada, M.3
Ose, T.4
Watabe, H.5
Kuroda, Y.6
Mitsunaga, K.7
Matsuse, D.8
Shigemoto, T.9
Ito, A.10
-
14
-
-
77955908881
-
A novel Gfer-Drp1 link in preserving mitochondrial dynamics and function in pluripotent stem cells
-
Todd LR, Gomathinayagam R and Sankar U: A novel Gfer-Drp1 link in preserving mitochondrial dynamics and function in pluripotent stem cells. Autophagy 6: 821-822, 2010.
-
(2010)
Autophagy
, vol.6
, pp. 821-822
-
-
Todd, L.R.1
Gomathinayagam, R.2
Sankar, U.3
-
15
-
-
84896390397
-
Autophagy and apoptosis: Where do they meet?
-
Mukhopadhyay S, Panda PK, Sinha N, Das DN and Bhutia SK: Autophagy and apoptosis: Where do they meet? Apoptosis 19: 555-566, 2014.
-
(2014)
Apoptosis
, vol.19
, pp. 555-566
-
-
Mukhopadhyay, S.1
Panda, P.K.2
Sinha, N.3
Das, D.N.4
Bhutia, S.K.5
-
16
-
-
50249103834
-
The cell biology of autophagy in metazoans: A developing story
-
Meléndez A and Neufeld TP: The cell biology of autophagy in metazoans: A developing story. Development 135: 2347-2360, 2008.
-
(2008)
Development
, vol.135
, pp. 2347-2360
-
-
Meléndez, A.1
Neufeld, T.P.2
-
17
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075, 2008.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
18
-
-
77951214016
-
Mammalian autophagy: Core molecular machinery and signaling regulation
-
Yang Z and Klionsky DJ: Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol 22: 124-131, 2010.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
19
-
-
27644484061
-
Autophagy: Molecular machinery for self-eating
-
Yorimitsu T and Klionsky DJ: Autophagy: Molecular machinery for self-eating. Cell Death Differ 12 (Suppl 2): S1542-S1552, 2005.
-
(2005)
Cell Death Differ
, vol.12
, pp. S1542-S1552
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
20
-
-
84880893068
-
Autophagy in stem cells
-
Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A and Zhang J: Autophagy in stem cells. Autophagy 9: 830-849, 2013.
-
(2013)
Autophagy
, vol.9
, pp. 830-849
-
-
Guan, J.L.1
Simon, A.K.2
Prescott, M.3
Menendez, J.A.4
Liu, F.5
Wang, F.6
Wang, C.7
Wolvetang, E.8
Vazquez-Martin, A.9
Zhang, J.10
-
21
-
-
79953139746
-
Drosophila as a model system to study autophagy
-
Zirin J and Perrimon N: Drosophila as a model system to study autophagy. Semin Immunopathol 32: 363-372, 2010.
-
(2010)
Semin Immunopathol
, vol.32
, pp. 363-372
-
-
Zirin, J.1
Perrimon, N.2
-
23
-
-
33644984490
-
A new description of cellular quiescence
-
Coller HA, Sang L and Roberts JM: A new description of cellular quiescence. PLoS Biol 4: e83, 2006.
-
(2006)
PLoS Biol
, vol.4
, pp. e83
-
-
Coller, H.A.1
Sang, L.2
Roberts, J.M.3
-
24
-
-
84872340936
-
Tightrope act: Autophagy in stem cell renewal, differentiation, proliferation and aging
-
Phadwal K, Watson AS and Simon AK: Tightrope act: Autophagy in stem cell renewal, differentiation, proliferation and aging. Cell Mol Life Sci 70: 89-103, 2013.
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 89-103
-
-
Phadwal, K.1
Watson, A.S.2
Simon, A.K.3
-
25
-
-
80052382925
-
Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation
-
Mortensen M, Watson AS and Simon AK: Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation. Autophagy 7: 1069-1070, 2011.
-
(2011)
Autophagy
, vol.7
, pp. 1069-1070
-
-
Mortensen, M.1
Watson, A.S.2
Simon, A.K.3
-
26
-
-
3242888703
-
LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
-
Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y and Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117: 2805-2812, 2004.
-
(2004)
J Cell Sci
, vol.117
, pp. 2805-2812
-
-
Kabeya, Y.1
Mizushima, N.2
Yamamoto, A.3
Oshitani-Okamoto, S.4
Ohsumi, Y.5
Yoshimori, T.6
-
27
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et al: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12: 213-223, 2010.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
-
28
-
-
77954955537
-
The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis
-
Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A and McCubrey JA: The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochim Biophys Acta 1803: 991-1002, 2010.
-
(2010)
Biochim Biophys Acta
, vol.1803
, pp. 991-1002
-
-
Martelli, A.M.1
Evangelisti, C.2
Chiarini, F.3
Grimaldi, C.4
Cappellini, A.5
Ognibene, A.6
McCubrey, J.A.7
-
29
-
-
77951217000
-
Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class i and III phosphoinositide 3-kinase
-
Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P and Shen HM: Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285: 10850-10861, 2010.
-
(2010)
J Biol Chem
, vol.285
, pp. 10850-10861
-
-
Wu, Y.T.1
Tan, H.L.2
Shui, G.3
Bauvy, C.4
Huang, Q.5
Wenk, M.R.6
Ong, C.N.7
Codogno, P.8
Shen, H.M.9
-
30
-
-
79956014819
-
Induction of lysosomal dilatation, arrested autophagy and cell death by chloroquine in cultured ARPE-19 cells
-
Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA and Koh JY: Induction of lysosomal dilatation, arrested autophagy and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci 51: 6030-6037, 2010.
-
(2010)
Invest Ophthalmol Vis Sci
, vol.51
, pp. 6030-6037
-
-
Yoon, Y.H.1
Cho, K.S.2
Hwang, J.J.3
Lee, S.J.4
Choi, J.A.5
Koh, J.Y.6
-
31
-
-
84870389278
-
Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells
-
Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D and Trajkovic V: Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 52: 524-531, 2013.
-
(2013)
Bone
, vol.52
, pp. 524-531
-
-
Pantovic, A.1
Krstic, A.2
Janjetovic, K.3
Kocic, J.4
Harhaji-Trajkovic, L.5
Bugarski, D.6
Trajkovic, V.7
-
32
-
-
84869433016
-
Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR
-
Lee Y, Jung J, Cho KJ, Lee SK, Park JW, Oh IH and Kim GJ: Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell Biochem 114: 79-88, 2013.
-
(2013)
J Cell Biochem
, vol.114
, pp. 79-88
-
-
Lee, Y.1
Jung, J.2
Cho, K.J.3
Lee, S.K.4
Park, J.W.5
Oh, I.H.6
Kim, G.J.7
-
33
-
-
84900901607
-
Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2
-
Wu J, Niu J, Li X, Li Y, Wang X, Lin J and Zhang F: Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2. Cell Physiol Biochem 33: 1467-1474, 2014.
-
(2014)
Cell Physiol Biochem
, vol.33
, pp. 1467-1474
-
-
Wu, J.1
Niu, J.2
Li, X.3
Li, Y.4
Wang, X.5
Lin, J.6
Zhang, F.7
-
34
-
-
84896322529
-
Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway
-
Li N, Zhang Q, Qian HY, Jin C, Yang Y and Gao R: Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Chin Med J (Engl) 127: 1046-1051, 2014.
-
(2014)
Chin Med J (Engl)
, vol.127
, pp. 1046-1051
-
-
Li, N.1
Zhang, Q.2
Qian, H.Y.3
Jin, C.4
Yang, Y.5
Gao, R.6
-
35
-
-
84908509128
-
Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells
-
Song C, Song C and Tong F: Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells. Cytotherapy 26: 1361-1370, 2014.
-
(2014)
Cytotherapy
, vol.26
, pp. 1361-1370
-
-
Song, C.1
Song, C.2
Tong, F.3
-
36
-
-
84893714063
-
Increased leptin by hypoxic-preconditioning promotes autophagy of mesenchymal stem cells and protects them from apoptosis
-
Wang L, Hu X, Zhu W, Jiang Z, Zhou Y, Chen P and Wang J: Increased leptin by hypoxic-preconditioning promotes autophagy of mesenchymal stem cells and protects them from apoptosis. Sci China Life Sci 57: 171-180, 2014.
-
(2014)
Sci China Life Sci
, vol.57
, pp. 171-180
-
-
Wang, L.1
Hu, X.2
Zhu, W.3
Jiang, Z.4
Zhou, Y.5
Chen, P.6
Wang, J.7
-
37
-
-
80053391464
-
CAMP induces autophagy via a novel pathway involving ERK, cyclin e and Beclin 1
-
Ugland H, Naderi S, Brech A, Collas P and Blomhoff HK: CAMP induces autophagy via a novel pathway involving ERK, cyclin E and Beclin 1. Autophagy 7: 1199-1211, 2011.
-
(2011)
Autophagy
, vol.7
, pp. 1199-1211
-
-
Ugland, H.1
Naderi, S.2
Brech, A.3
Collas, P.4
Blomhoff, H.K.5
-
38
-
-
8344242220
-
Autophagy in health and disease: A double-edged sword
-
Shintani T and Klionsky DJ: Autophagy in health and disease: A double-edged sword. Science 306: 990-995, 2004.
-
(2004)
Science
, vol.306
, pp. 990-995
-
-
Shintani, T.1
Klionsky, D.J.2
-
39
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ and Czaja MJ: Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119: 3329-3339, 2009.
-
(2009)
J Clin Invest
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
Xiang, Y.2
Wang, Y.3
Baikati, K.4
Cuervo, A.M.5
Luu, Y.K.6
Tang, Y.7
Pessin, J.E.8
Schwartz, G.J.9
Czaja, M.J.10
-
40
-
-
84908225505
-
Role of autophagy and mTOR signaling in neural differentiation of bone marrow mesenchymal stem cells
-
Li Y, Wang C, Zhang G, Wang X, Duan R, Gao H, Peng T, Teng J and Jia Y: Role of autophagy and mTOR signaling in neural differentiation of bone marrow mesenchymal stem cells. Cell Biol Int 38: 1337-1343, 2014.
-
(2014)
Cell Biol Int
, vol.38
, pp. 1337-1343
-
-
Li, Y.1
Wang, C.2
Zhang, G.3
Wang, X.4
Duan, R.5
Gao, H.6
Peng, T.7
Teng, J.8
Jia, Y.9
-
41
-
-
84891768014
-
Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer
-
Patel PN, Yu XM, Jaskula-Sztul R and Chen H: Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann Surg Oncol 21 Suppl 4: S497-S504, 2014.
-
(2014)
Ann Surg Oncol
, vol.21
, pp. S497-S504
-
-
Patel, P.N.1
Yu, X.M.2
Jaskula-Sztul, R.3
Chen, H.4
-
42
-
-
84907075560
-
NOTCH1 signaling contributes to cell growth, anti-apoptosis and metastasis in salivary adenoid cystic carcinoma
-
Su BH, Qu J, Song M, Huang XY, Hu XM, Xie J, Zhao Y, Ding LC, She L, Chen J, et al: NOTCH1 signaling contributes to cell growth, anti-apoptosis and metastasis in salivary adenoid cystic carcinoma. Oncotarget 5: 6885-6895, 2014.
-
(2014)
Oncotarget
, vol.5
, pp. 6885-6895
-
-
Su, B.H.1
Qu, J.2
Song, M.3
Huang, X.Y.4
Hu, X.M.5
Xie, J.6
Zhao, Y.7
Ding, L.C.8
She, L.9
Chen, J.10
-
43
-
-
84891545176
-
Numb family proteins are essential for cardiac morphogenesis and progenitor differentiation
-
Zhao C, Guo H, Li J, Myint T, Pittman W, Yang L, Zhong W, Schwartz RJ, Schwarz JJ, et al: Numb family proteins are essential for cardiac morphogenesis and progenitor differentiation. Development 141: 281-295, 2014.
-
(2014)
Development
, vol.141
, pp. 281-295
-
-
Zhao, C.1
Guo, H.2
Li, J.3
Myint, T.4
Pittman, W.5
Yang, L.6
Zhong, W.7
Schwartz, R.J.8
Schwarz, J.J.9
-
44
-
-
38449086118
-
Expression changes of Notch-related genes during the differentiation of human mesenchymal stem cells into neurons
-
In Chinese
-
Xing Y, Bai RY, Yan WH, Han XF, Duan P, Xu Y and Fan ZG: Expression changes of Notch-related genes during the differentiation of human mesenchymal stem cells into neurons. Sheng Li Xue Bao 59: 267-272, 2007 (In Chinese).
-
(2007)
Sheng Li Xue Bao
, vol.59
, pp. 267-272
-
-
Xing, Y.1
Bai, R.Y.2
Yan, W.H.3
Han, X.F.4
Duan, P.5
Xu, Y.6
Fan, Z.G.7
-
45
-
-
84901313025
-
How to take autophagy and endocytosis up a notch
-
Barth JM and Köhler K: How to take autophagy and endocytosis up a notch. Biomed Res Int 2014: 960803, 2014.
-
(2014)
Biomed Res Int
, vol.2014
, pp. 960803
-
-
Barth, J.M.1
Köhler, K.2
-
46
-
-
84883253496
-
A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster
-
Kwon MH, Callaway H, Zhong J and Yedvobnick B: A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster. G3 (Bethesda) 3: 815-825, 2013.
-
(2013)
G3 (Bethesda)
, vol.3
, pp. 815-825
-
-
Kwon, M.H.1
Callaway, H.2
Zhong, J.3
Yedvobnick, B.4
-
47
-
-
77956309044
-
Endocytosis and intracellular trafficking of Notch and its ligands
-
Yamamoto S, Charng WL and Bellen HJ: Endocytosis and intracellular trafficking of Notch and its ligands. Curr Top Dev Biol 92: 165-200, 2010.
-
(2010)
Curr Top Dev Biol
, vol.92
, pp. 165-200
-
-
Yamamoto, S.1
Charng, W.L.2
Bellen, H.J.3
|