메뉴 건너뛰기




Volumn 41, Issue 4, 2016, Pages 293-310

A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure

Author keywords

RNA polymerase; RNA processing; RNA structure; termination and antitermination; transcriptional pausing

Indexed keywords

ELONGATION FACTOR; ELONGATION FACTOR NUSA; ELONGATION FACTOR NUSG; MESSENGER RNA; NASCENT RNA; RNA; RNA POLYMERASE; UNCLASSIFIED DRUG; DNA DIRECTED RNA POLYMERASE; ESCHERICHIA COLI PROTEIN; NUSA PROTEIN, E COLI; NUSG PROTEIN, E COLI; PROTEIN BINDING; PROTEIN SUBUNIT; TRANSCRIPTION ELONGATION FACTOR; TRANSCRIPTION FACTOR;

EID: 84955600694     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.12.009     Document Type: Review
Times cited : (107)

References (141)
  • 1
    • 0014378880 scopus 로고
    • The origin of the genetic code
    • Crick, F.H.C., The origin of the genetic code. J. Mol. Biol. 38 (1968), 367–379.
    • (1968) J. Mol. Biol. , vol.38 , pp. 367-379
    • Crick, F.H.C.1
  • 2
    • 0034637161 scopus 로고    scopus 로고
    • The structural basis of ribosome activity in peptide bond synthesis
    • Nissen, P., et al. The structural basis of ribosome activity in peptide bond synthesis. Science 289 (2000), 920–930.
    • (2000) Science , vol.289 , pp. 920-930
    • Nissen, P.1
  • 3
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution
    • Ban, N., et al. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289 (2000), 905–920.
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1
  • 4
    • 84887624226 scopus 로고    scopus 로고
    • RNA catalyses nuclear pre-mRNA splicing
    • Fica, S.M., et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503 (2013), 229–234.
    • (2013) Nature , vol.503 , pp. 229-234
    • Fica, S.M.1
  • 6
    • 78650175123 scopus 로고    scopus 로고
    • Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA
    • Reiter, N.J., et al. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468 (2010), 784–789.
    • (2010) Nature , vol.468 , pp. 784-789
    • Reiter, N.J.1
  • 7
    • 84897128298 scopus 로고    scopus 로고
    • The noncoding RNA revolution-trashing old rules to forge new ones
    • Cech, T.R., Steitz, J.A., The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157 (2014), 77–94.
    • (2014) Cell , vol.157 , pp. 77-94
    • Cech, T.R.1    Steitz, J.A.2
  • 8
    • 41749109563 scopus 로고    scopus 로고
    • Crystal structure of a self-spliced group II intron
    • Toor, N., et al. Crystal structure of a self-spliced group II intron. Science (New York, NY) 320 (2008), 77–82.
    • (2008) Science (New York, NY) , vol.320 , pp. 77-82
    • Toor, N.1
  • 9
    • 84881665997 scopus 로고    scopus 로고
    • Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA
    • Zhang, J., Ferré-D'Amaré, A.R., Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500 (2013), 363–366.
    • (2013) Nature , vol.500 , pp. 363-366
    • Zhang, J.1    Ferré-D'Amaré, A.R.2
  • 10
    • 78049276834 scopus 로고    scopus 로고
    • Ribozymes and riboswitches: modulation of RNA function by small molecules
    • Zhang, J., et al. Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49 (2010), 9123–9131.
    • (2010) Biochemistry , vol.49 , pp. 9123-9131
    • Zhang, J.1
  • 11
    • 9344271130 scopus 로고    scopus 로고
    • The driving force for molecular evolution of translation
    • Noller, H.F., The driving force for molecular evolution of translation. RNA 10 (2004), 1833–1837.
    • (2004) RNA , vol.10 , pp. 1833-1837
    • Noller, H.F.1
  • 12
    • 17844405021 scopus 로고    scopus 로고
    • Coevolution theory of the genetic code at age thirty
    • Wong, J.T., Coevolution theory of the genetic code at age thirty. Bioessays 27 (2005), 416–425.
    • (2005) Bioessays , vol.27 , pp. 416-425
    • Wong, J.T.1
  • 13
    • 84922032648 scopus 로고    scopus 로고
    • How amino acids and peptides shaped the RNA world
    • van der Gulik, P.T., Speijer, D., How amino acids and peptides shaped the RNA world. Life (Basel) 5 (2015), 230–246.
    • (2015) Life (Basel) , vol.5 , pp. 230-246
    • van der Gulik, P.T.1    Speijer, D.2
  • 14
    • 0037791613 scopus 로고    scopus 로고
    • Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases
    • Iyer, L.M., et al. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct. Biol., 3, 2003, 1.
    • (2003) BMC Struct. Biol. , vol.3 , pp. 1
    • Iyer, L.M.1
  • 15
    • 9344221087 scopus 로고    scopus 로고
    • Mapping of catalytic residues in the RNA polymerase active center
    • Zaychikov, E., et al. Mapping of catalytic residues in the RNA polymerase active center. Science 273 (1996), 107–109.
    • (1996) Science , vol.273 , pp. 107-109
    • Zaychikov, E.1
  • 16
    • 0036601353 scopus 로고    scopus 로고
    • Trends in protein evolution inferred from sequence and structure analysis
    • Aravind, L., et al. Trends in protein evolution inferred from sequence and structure analysis. Curr. Opin. Struct. Biol. 12 (2002), 392–399.
    • (2002) Curr. Opin. Struct. Biol. , vol.12 , pp. 392-399
    • Aravind, L.1
  • 17
    • 2942576138 scopus 로고    scopus 로고
    • Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer
    • Iyer, L.M., et al. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene 335 (2004), 73–88.
    • (2004) Gene , vol.335 , pp. 73-88
    • Iyer, L.M.1
  • 18
    • 0035957687 scopus 로고    scopus 로고
    • Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins
    • Toulokhonov, I., et al. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292 (2001), 730–733.
    • (2001) Science , vol.292 , pp. 730-733
    • Toulokhonov, I.1
  • 19
    • 50249153555 scopus 로고    scopus 로고
    • Inhibition of a transcriptional pause by RNA anchoring to RNA polymerase
    • Komissarova, N., et al. Inhibition of a transcriptional pause by RNA anchoring to RNA polymerase. Mol. Cell 31 (2008), 683–694.
    • (2008) Mol. Cell , vol.31 , pp. 683-694
    • Komissarova, N.1
  • 20
    • 0033765116 scopus 로고    scopus 로고
    • RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro
    • Artsimovitch, I., et al. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J. Bacteriol. 182 (2000), 6027–6035.
    • (2000) J. Bacteriol. , vol.182 , pp. 6027-6035
    • Artsimovitch, I.1
  • 21
    • 0033179498 scopus 로고    scopus 로고
    • Transcriptional pause, arrest and termination sites for RNA polymerase II in mammalian N- and c-myc genes
    • Keene, R.G., et al. Transcriptional pause, arrest and termination sites for RNA polymerase II in mammalian N- and c-myc genes. Nucleic Acids Res. 27 (1999), 3173–3182.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 3173-3182
    • Keene, R.G.1
  • 22
    • 36749064979 scopus 로고    scopus 로고
    • Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures
    • Wong, T.N., et al. Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 17995–18000.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 17995-18000
    • Wong, T.N.1
  • 23
    • 0033578330 scopus 로고    scopus 로고
    • Folding of a large ribozyme during transcription and the effect of the elongation factor NusA
    • Pan, T., et al. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 9545–9550.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 9545-9550
    • Pan, T.1
  • 24
    • 0021217722 scopus 로고
    • Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region
    • Landick, R., Yanofsky, C., Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region. J. Biol. Chem. 259 (1984), 11550–11555.
    • (1984) J. Biol. Chem. , vol.259 , pp. 11550-11555
    • Landick, R.1    Yanofsky, C.2
  • 25
    • 84891776041 scopus 로고    scopus 로고
    • Changes in transcriptional pausing modify the folding dynamics of the pH-responsive RNA element
    • Nechooshtan, G., et al. Changes in transcriptional pausing modify the folding dynamics of the pH-responsive RNA element. Nucleic Acids Res. 42 (2014), 622–630.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 622-630
    • Nechooshtan, G.1
  • 26
    • 0024408799 scopus 로고
    • The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. Mechanistic implications of the effect on pausing of altered RNA hairpins
    • Chan, C.L., Landick, R., The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. Mechanistic implications of the effect on pausing of altered RNA hairpins. J. Biol. Chem. 264 (1989), 20796–20804.
    • (1989) J. Biol. Chem. , vol.264 , pp. 20796-20804
    • Chan, C.L.1    Landick, R.2
  • 27
    • 33744981369 scopus 로고    scopus 로고
    • Sequence-resolved detection of pausing by single RNA polymerase molecules
    • Herbert, K.M., et al. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 125 (2006), 1083–1094.
    • (2006) Cell , vol.125 , pp. 1083-1094
    • Herbert, K.M.1
  • 28
    • 0034691146 scopus 로고    scopus 로고
    • Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals
    • Artsimovitch, I., Landick, R., Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 7090–7095.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 7090-7095
    • Artsimovitch, I.1    Landick, R.2
  • 29
    • 67049154068 scopus 로고    scopus 로고
    • Transcriptional pausing without backtracking
    • Landick, R., Transcriptional pausing without backtracking. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 8797–8798.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8797-8798
    • Landick, R.1
  • 30
    • 79960395328 scopus 로고    scopus 로고
    • Bacterial transcription terminators: the RNA 3′-end chronicles
    • Peters, J.M., et al. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412 (2011), 793–813.
    • (2011) J. Mol. Biol. , vol.412 , pp. 793-813
    • Peters, J.M.1
  • 31
    • 33846914726 scopus 로고    scopus 로고
    • The regulatory roles and mechanism of transcriptional pausing
    • Landick, R., The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34 (2006), 1062–1066.
    • (2006) Biochem. Soc. Trans. , vol.34 , pp. 1062-1066
    • Landick, R.1
  • 32
    • 67049100283 scopus 로고    scopus 로고
    • Mechanism of sequence-specific pausing of bacterial RNA polymerase
    • Kireeva, M.L., Kashlev, M., Mechanism of sequence-specific pausing of bacterial RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 8900–8905.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8900-8905
    • Kireeva, M.L.1    Kashlev, M.2
  • 33
    • 84938930573 scopus 로고    scopus 로고
    • Two transcription pause elements underlie a sigma70-dependent pause cycle
    • Strobel, E.J., Roberts, J.W., Two transcription pause elements underlie a sigma70-dependent pause cycle. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E4374–E4380.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E4374-E4380
    • Strobel, E.J.1    Roberts, J.W.2
  • 34
    • 84873323216 scopus 로고    scopus 로고
    • Structural basis of transcriptional pausing in bacteria
    • Weixlbaumer, A., et al. Structural basis of transcriptional pausing in bacteria. Cell 152 (2013), 431–441.
    • (2013) Cell , vol.152 , pp. 431-441
    • Weixlbaumer, A.1
  • 35
    • 0030950638 scopus 로고    scopus 로고
    • RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA
    • Komissarova, N., Kashlev, M., RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272 (1997), 15329–15338.
    • (1997) J. Biol. Chem. , vol.272 , pp. 15329-15338
    • Komissarova, N.1    Kashlev, M.2
  • 36
    • 84862673628 scopus 로고    scopus 로고
    • RNA polymerase backtracking in gene regulation and genome instability
    • Nudler, E., RNA polymerase backtracking in gene regulation and genome instability. Cell 149 (2012), 1438–1445.
    • (2012) Cell , vol.149 , pp. 1438-1445
    • Nudler, E.1
  • 37
    • 84921960363 scopus 로고    scopus 로고
    • RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement
    • Hein, P.P., et al. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat. Struct. Mol. Biol. 21 (2014), 794–802.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 794-802
    • Hein, P.P.1
  • 38
    • 34547204502 scopus 로고    scopus 로고
    • A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing
    • Toulokhonov, I., et al. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 27 (2007), 406–419.
    • (2007) Mol. Cell , vol.27 , pp. 406-419
    • Toulokhonov, I.1
  • 39
    • 7444253928 scopus 로고    scopus 로고
    • Sequence-dependent kinetic model for transcription elongation by RNA polymerase
    • Bai, L., et al. Sequence-dependent kinetic model for transcription elongation by RNA polymerase. J. Mol. Biol. 344 (2004), 335–349.
    • (2004) J. Mol. Biol. , vol.344 , pp. 335-349
    • Bai, L.1
  • 40
    • 33645222759 scopus 로고    scopus 로고
    • Thermodynamic and kinetic modeling of transcriptional pausing
    • Tadigotla, V.R., et al. Thermodynamic and kinetic modeling of transcriptional pausing. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 4439–4444.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 4439-4444
    • Tadigotla, V.R.1
  • 41
    • 84873408886 scopus 로고    scopus 로고
    • Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II
    • Imashimizu, M., et al. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. J. Mol. Biol. 425 (2013), 697–712.
    • (2013) J. Mol. Biol. , vol.425 , pp. 697-712
    • Imashimizu, M.1
  • 42
    • 84901676291 scopus 로고    scopus 로고
    • A pause sequence enriched at translation start sites drives transcription dynamics in vivo
    • Larson, M.H., et al. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344 (2014), 1042–1047.
    • (2014) Science , vol.344 , pp. 1042-1047
    • Larson, M.H.1
  • 43
    • 77449093660 scopus 로고    scopus 로고
    • Role of the RNA polymerase trigger loop in catalysis and pausing
    • Zhang, J., et al. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat. Struct. Mol. Biol. 17 (2010), 99–104.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 99-104
    • Zhang, J.1
  • 44
    • 84880839662 scopus 로고    scopus 로고
    • Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase
    • Nayak, D., et al. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol. Cell 50 (2013), 882–893.
    • (2013) Mol. Cell , vol.50 , pp. 882-893
    • Nayak, D.1
  • 45
    • 84926080915 scopus 로고    scopus 로고
    • Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase
    • Windgassen, T.A., et al. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic Acids Res. 42 (2014), 12707–12721.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 12707-12721
    • Windgassen, T.A.1
  • 46
    • 84870522491 scopus 로고    scopus 로고
    • Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation
    • Lennon, C.W., et al. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Genes Dev. 26 (2012), 2634–2646.
    • (2012) Genes Dev. , vol.26 , pp. 2634-2646
    • Lennon, C.W.1
  • 47
    • 81155132249 scopus 로고    scopus 로고
    • Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop
    • Artsimovitch, I., et al. Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. J. Biol. Chem. 286 (2011), 40395–40400.
    • (2011) J. Biol. Chem. , vol.286 , pp. 40395-40400
    • Artsimovitch, I.1
  • 48
    • 44449103640 scopus 로고    scopus 로고
    • The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin
    • Kaplan, C.D., et al. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol. Cell 30 (2008), 547–556.
    • (2008) Mol. Cell , vol.30 , pp. 547-556
    • Kaplan, C.D.1
  • 49
    • 84884682805 scopus 로고    scopus 로고
    • Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism
    • Dangkulwanich, M., et al. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. Elife, 2, 2013, e00971.
    • (2013) Elife , vol.2 , pp. e00971
    • Dangkulwanich, M.1
  • 50
    • 66149143165 scopus 로고    scopus 로고
    • The origin of short transcriptional pauses
    • Depken, M., et al. The origin of short transcriptional pauses. Biophys. J. 96 (2009), 2189–2193.
    • (2009) Biophys. J. , vol.96 , pp. 2189-2193
    • Depken, M.1
  • 52
    • 77954649456 scopus 로고    scopus 로고
    • RNA folding during transcription: protocols and studies
    • Wong, T.N., Pan, T., RNA folding during transcription: protocols and studies. Methods Enzymol. 468 (2009), 167–193.
    • (2009) Methods Enzymol. , vol.468 , pp. 167-193
    • Wong, T.N.1    Pan, T.2
  • 53
    • 84857771826 scopus 로고    scopus 로고
    • Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch
    • Perdrizet, G.A. 2nd, et al. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 3323–3328.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3323-3328
    • Perdrizet, G.A.1
  • 54
    • 84861846613 scopus 로고    scopus 로고
    • Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases
    • Zamft, B., et al. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 8948–8953.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 8948-8953
    • Zamft, B.1
  • 56
    • 34147206187 scopus 로고    scopus 로고
    • Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner
    • Galburt, E.A., et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446 (2007), 820–823.
    • (2007) Nature , vol.446 , pp. 820-823
    • Galburt, E.A.1
  • 57
    • 40749096382 scopus 로고    scopus 로고
    • Applied force reveals mechanistic and energetic details of transcription termination
    • Larson, M.H., et al. Applied force reveals mechanistic and energetic details of transcription termination. Cell 132 (2008), 971–982.
    • (2008) Cell , vol.132 , pp. 971-982
    • Larson, M.H.1
  • 58
    • 1842715585 scopus 로고    scopus 로고
    • Forward translocation is the natural pathway of RNA release at an intrinsic terminator
    • Santangelo, T.J., Roberts, J.W., Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14 (2004), 117–126.
    • (2004) Mol. Cell , vol.14 , pp. 117-126
    • Santangelo, T.J.1    Roberts, J.W.2
  • 59
    • 79954601990 scopus 로고    scopus 로고
    • Regulation of gene expression by reiterative transcription
    • Turnbough, C.L. Jr, Regulation of gene expression by reiterative transcription. Curr. Opin. Microbiol. 14 (2011), 142–147.
    • (2011) Curr. Opin. Microbiol. , vol.14 , pp. 142-147
    • Turnbough, C.L.1
  • 60
    • 84928253139 scopus 로고    scopus 로고
    • Productive mRNA stem loop-mediated transcriptional slippage: crucial features in common with intrinsic terminators
    • Penno, C., et al. Productive mRNA stem loop-mediated transcriptional slippage: crucial features in common with intrinsic terminators. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E1984–E1993.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E1984-E1993
    • Penno, C.1
  • 61
    • 0026566314 scopus 로고
    • Parameters affecting transcription termination by Escherichia coli RNA polymerase I. Analysis of 13 rho-independent terminators
    • Reynolds, R., et al. Parameters affecting transcription termination by Escherichia coli RNA polymerase I. Analysis of 13 rho-independent terminators. J. Mol. Biol. 224 (1992), 31–51.
    • (1992) J. Mol. Biol. , vol.224 , pp. 31-51
    • Reynolds, R.1
  • 62
    • 0033120034 scopus 로고    scopus 로고
    • The mechanism of intrinsic transcription termination
    • Gusarov, I., Nudler, E., The mechanism of intrinsic transcription termination. Mol. Cell 3 (1999), 495–504.
    • (1999) Mol. Cell , vol.3 , pp. 495-504
    • Gusarov, I.1    Nudler, E.2
  • 63
    • 77951565303 scopus 로고    scopus 로고
    • A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales
    • Irnov, I., Winkler, W.C., A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales. Mol. Microbiol. 76 (2010), 559–575.
    • (2010) Mol. Microbiol. , vol.76 , pp. 559-575
    • Irnov, I.1    Winkler, W.C.2
  • 64
    • 0037133970 scopus 로고    scopus 로고
    • The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand
    • Artsimovitch, I., Landick, R., The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109 (2002), 193–203.
    • (2002) Cell , vol.109 , pp. 193-203
    • Artsimovitch, I.1    Landick, R.2
  • 65
    • 0036753065 scopus 로고    scopus 로고
    • The sigma(70) subunit of RNA polymerase is contacted by the (lambda)Q antiterminator during early elongation
    • Nickels, B.E., et al. The sigma(70) subunit of RNA polymerase is contacted by the (lambda)Q antiterminator during early elongation. Mol. Cell 10 (2002), 611–622.
    • (2002) Mol. Cell , vol.10 , pp. 611-622
    • Nickels, B.E.1
  • 66
    • 0023651362 scopus 로고
    • An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site
    • Barik, S., et al. An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site. Cell 50 (1987), 885–899.
    • (1987) Cell , vol.50 , pp. 885-899
    • Barik, S.1
  • 67
    • 77951538824 scopus 로고    scopus 로고
    • A processive riboantiterminator seeks a switch to make biofilms
    • Artsimovitch, I., A processive riboantiterminator seeks a switch to make biofilms. Mol. Microbiol. 76 (2010), 535–539.
    • (2010) Mol. Microbiol. , vol.76 , pp. 535-539
    • Artsimovitch, I.1
  • 69
    • 0035984639 scopus 로고    scopus 로고
    • Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions
    • Henkin, T.M., Yanofsky, C., Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24 (2002), 700–707.
    • (2002) Bioessays , vol.24 , pp. 700-707
    • Henkin, T.M.1    Yanofsky, C.2
  • 70
    • 0019886894 scopus 로고
    • Pausing of RNA polymerase during in vitro transcription of the tryptophan operon leader region
    • Winkler, M.E., Yanofsky, C., Pausing of RNA polymerase during in vitro transcription of the tryptophan operon leader region. Biochemistry 20 (1981), 3738–3744.
    • (1981) Biochemistry , vol.20 , pp. 3738-3744
    • Winkler, M.E.1    Yanofsky, C.2
  • 71
    • 0019979340 scopus 로고
    • Initiation, pausing, and termination of transcription in the threonine operon regulatory region of Escherichia coli
    • Gardner, J.F., Initiation, pausing, and termination of transcription in the threonine operon regulatory region of Escherichia coli. J. Biol. Chem. 257 (1982), 3896–3904.
    • (1982) J. Biol. Chem. , vol.257 , pp. 3896-3904
    • Gardner, J.F.1
  • 72
    • 0021959511 scopus 로고
    • Pausing of RNA polymerase during in vitro transcription through the ilvB and ilvGEDA attenuator regions of Escherichia coli K12
    • Hauser, C.A., et al. Pausing of RNA polymerase during in vitro transcription through the ilvB and ilvGEDA attenuator regions of Escherichia coli K12. J. Biol. Chem. 260 (1985), 1765–1770.
    • (1985) J. Biol. Chem. , vol.260 , pp. 1765-1770
    • Hauser, C.A.1
  • 73
    • 0026078805 scopus 로고
    • Transcription attenuation-mediated control of leu operon expression: influence of the number of Leu control codons
    • Bartkus, J.M., et al. Transcription attenuation-mediated control of leu operon expression: influence of the number of Leu control codons. J. Bacteriol. 173 (1991), 1634–1641.
    • (1991) J. Bacteriol. , vol.173 , pp. 1634-1641
    • Bartkus, J.M.1
  • 74
    • 84891910083 scopus 로고    scopus 로고
    • Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH
    • Kolb, K.E., et al. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. J. Biol. Chem. 289 (2014), 1151–1163.
    • (2014) J. Biol. Chem. , vol.289 , pp. 1151-1163
    • Kolb, K.E.1
  • 75
    • 0032190641 scopus 로고    scopus 로고
    • Interaction of a nascent RNA structure with RNA polymerase is required for hairpin-dependent transcriptional pausing but not for transcript release
    • Artsimovitch, I., Landick, R., Interaction of a nascent RNA structure with RNA polymerase is required for hairpin-dependent transcriptional pausing but not for transcript release. Genes Dev. 12 (1998), 3110–3122.
    • (1998) Genes Dev. , vol.12 , pp. 3110-3122
    • Artsimovitch, I.1    Landick, R.2
  • 76
    • 34547097808 scopus 로고    scopus 로고
    • Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex
    • Kyzer, S., et al. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. J. Biol. Chem. 282 (2007), 19020–19028.
    • (2007) J. Biol. Chem. , vol.282 , pp. 19020-19028
    • Kyzer, S.1
  • 77
    • 0025005373 scopus 로고
    • A quantitative assessment for transcriptional pausing of DNA-dependent RNA polymerases in vitro
    • Theissen, G., et al. A quantitative assessment for transcriptional pausing of DNA-dependent RNA polymerases in vitro. Anal. Biochem. 189 (1990), 254–261.
    • (1990) Anal. Biochem. , vol.189 , pp. 254-261
    • Theissen, G.1
  • 78
    • 34748854260 scopus 로고    scopus 로고
    • A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript
    • Shankar, S., et al. A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. Mol. Cell 27 (2007), 914–927.
    • (2007) Mol. Cell , vol.27 , pp. 914-927
    • Shankar, S.1
  • 79
    • 77955550450 scopus 로고    scopus 로고
    • The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase
    • Ha, K.S., et al. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401 (2010), 708–725.
    • (2010) J. Mol. Biol. , vol.401 , pp. 708-725
    • Ha, K.S.1
  • 80
    • 0037143667 scopus 로고    scopus 로고
    • NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism in vitro
    • Yakhnin, A.V., Babitzke, P., NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism in vitro. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 11067–11072.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 11067-11072
    • Yakhnin, A.V.1    Babitzke, P.2
  • 81
    • 77951565527 scopus 로고    scopus 로고
    • Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader
    • Yakhnin, A.V., Babitzke, P., Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol. Microbiol. 76 (2010), 690–705.
    • (2010) Mol. Microbiol. , vol.76 , pp. 690-705
    • Yakhnin, A.V.1    Babitzke, P.2
  • 82
    • 55849112295 scopus 로고    scopus 로고
    • Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader
    • Yakhnin, A.V., et al. Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 16131–16136.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 16131-16136
    • Yakhnin, A.V.1
  • 83
    • 84900483146 scopus 로고    scopus 로고
    • Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator
    • Hollands, K., et al. Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E1999–E2007.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E1999-E2007
    • Hollands, K.1
  • 84
    • 15944382675 scopus 로고    scopus 로고
    • The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch
    • Wickiser, J.K., et al. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18 (2005), 49–60.
    • (2005) Mol. Cell , vol.18 , pp. 49-60
    • Wickiser, J.K.1
  • 85
    • 72749118512 scopus 로고    scopus 로고
    • A pH-responsive riboregulator
    • Nechooshtan, G., et al. A pH-responsive riboregulator. Genes Dev. 23 (2009), 2650–2662.
    • (2009) Genes Dev. , vol.23 , pp. 2650-2662
    • Nechooshtan, G.1
  • 86
    • 26444620938 scopus 로고    scopus 로고
    • The kinetics of ligand binding by an adenine-sensing riboswitch
    • Wickiser, J.K., et al. The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44 (2005), 13404–13414.
    • (2005) Biochemistry , vol.44 , pp. 13404-13414
    • Wickiser, J.K.1
  • 87
    • 84867629183 scopus 로고    scopus 로고
    • Direct observation of cotranscriptional folding in an adenine riboswitch
    • Frieda, K.L., Block, S.M., Direct observation of cotranscriptional folding in an adenine riboswitch. Science 338 (2012), 397–400.
    • (2012) Science , vol.338 , pp. 397-400
    • Frieda, K.L.1    Block, S.M.2
  • 88
    • 79851499341 scopus 로고    scopus 로고
    • Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms
    • Lemay, J.F., et al. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet., 7, 2011, e1001278.
    • (2011) PLoS Genet. , vol.7 , pp. e1001278
    • Lemay, J.F.1
  • 89
    • 0024561808 scopus 로고
    • Sites of initiation and pausing in the Escherichia coli rnpB (M1 RNA) transcript
    • Lee, Y., et al. Sites of initiation and pausing in the Escherichia coli rnpB (M1 RNA) transcript. J. Biol. Chem. 264 (1989), 5098–5103.
    • (1989) J. Biol. Chem. , vol.264 , pp. 5098-5103
    • Lee, Y.1
  • 90
    • 58149312711 scopus 로고    scopus 로고
    • Regulator trafficking on bacterial transcription units in vivo
    • Mooney, R.A., et al. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33 (2009), 97–108.
    • (2009) Mol. Cell , vol.33 , pp. 97-108
    • Mooney, R.A.1
  • 91
    • 0034973423 scopus 로고    scopus 로고
    • An extended RNA binding surface through arrayed S1 and KH domains in transcription factor NusA
    • Worbs, M., et al. An extended RNA binding surface through arrayed S1 and KH domains in transcription factor NusA. Mol. Cell 7 (2001), 1177–1189.
    • (2001) Mol. Cell , vol.7 , pp. 1177-1189
    • Worbs, M.1
  • 92
    • 27144547978 scopus 로고    scopus 로고
    • Structure of a Mycobacterium tuberculosis NusA-RNA complex
    • Beuth, B., et al. Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J. 24 (2005), 3576–3587.
    • (2005) EMBO J. , vol.24 , pp. 3576-3587
    • Beuth, B.1
  • 93
    • 0032747748 scopus 로고    scopus 로고
    • Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA
    • Mah, T.F., et al. Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA. Mol. Microbiol. 34 (1999), 523–537.
    • (1999) Mol. Microbiol. , vol.34 , pp. 523-537
    • Mah, T.F.1
  • 94
    • 78751666283 scopus 로고    scopus 로고
    • RNA remodeling and gene regulation by cold shock proteins
    • Phadtare, S., Severinov, K., RNA remodeling and gene regulation by cold shock proteins. RNA Biol. 7 (2010), 788–795.
    • (2010) RNA Biol. , vol.7 , pp. 788-795
    • Phadtare, S.1    Severinov, K.2
  • 95
    • 84879005493 scopus 로고    scopus 로고
    • Structure and RNA-binding properties of the bacterial LSm protein Hfq
    • Sauer, E., Structure and RNA-binding properties of the bacterial LSm protein Hfq. RNA Biol. 10 (2013), 610–618.
    • (2013) RNA Biol. , vol.10 , pp. 610-618
    • Sauer, E.1
  • 96
    • 77953082083 scopus 로고    scopus 로고
    • E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase
    • Herbert, K.M., et al. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J. Mol. Biol. 399 (2010), 17–30.
    • (2010) J. Mol. Biol. , vol.399 , pp. 17-30
    • Herbert, K.M.1
  • 97
    • 67650676737 scopus 로고    scopus 로고
    • Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators
    • Mooney, R.A., et al. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 391 (2009), 341–358.
    • (2009) J. Mol. Biol. , vol.391 , pp. 341-358
    • Mooney, R.A.1
  • 98
    • 84899853384 scopus 로고    scopus 로고
    • Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators
    • Czyz, A., et al. Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. MBio, 5, 2014, e00931.
    • (2014) MBio , vol.5 , pp. e00931
    • Czyz, A.1
  • 99
    • 78649866419 scopus 로고    scopus 로고
    • Functional analysis of Thermus thermophilus transcription factor NusG
    • Sevostyanova, A., Artsimovitch, I., Functional analysis of Thermus thermophilus transcription factor NusG. Nucleic Acids Res. 38 (2010), 7432–7445.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 7432-7445
    • Sevostyanova, A.1    Artsimovitch, I.2
  • 100
    • 0029998144 scopus 로고    scopus 로고
    • A NusG-like protein from Thermotoga maritima binds to DNA and RNA
    • Liao, D., et al. A NusG-like protein from Thermotoga maritima binds to DNA and RNA. J. Bacteriol. 178 (1996), 4089–4098.
    • (1996) J. Bacteriol. , vol.178 , pp. 4089-4098
    • Liao, D.1
  • 101
    • 84923780299 scopus 로고    scopus 로고
    • Getting up to speed with transcription elongation by RNA polymerase II
    • Jonkers, I., Lis, J.T., Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16 (2015), 167–177.
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 167-177
    • Jonkers, I.1    Lis, J.T.2
  • 102
    • 84871699564 scopus 로고    scopus 로고
    • Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans
    • Adelman, K., Lis, J.T., Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13 (2012), 720–731.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 720-731
    • Adelman, K.1    Lis, J.T.2
  • 103
    • 84928397692 scopus 로고    scopus 로고
    • Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution
    • Mayer, A., et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161 (2015), 541–554.
    • (2015) Cell , vol.161 , pp. 541-554
    • Mayer, A.1
  • 104
    • 84928386012 scopus 로고    scopus 로고
    • Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing
    • Nojima, T., et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161 (2015), 526–540.
    • (2015) Cell , vol.161 , pp. 526-540
    • Nojima, T.1
  • 105
    • 84874175008 scopus 로고    scopus 로고
    • Precise maps of RNA polymerase reveal how promoters direct initiation and pausing
    • Kwak, H., et al. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339 (2013), 950–953.
    • (2013) Science , vol.339 , pp. 950-953
    • Kwak, H.1
  • 106
    • 74549132843 scopus 로고    scopus 로고
    • Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila
    • Nechaev, S., et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327 (2010), 335–338.
    • (2010) Science , vol.327 , pp. 335-338
    • Nechaev, S.1
  • 107
    • 36549061004 scopus 로고    scopus 로고
    • RNA polymerase is poised for activation across the genome
    • Muse, G.W., et al. RNA polymerase is poised for activation across the genome. Nat. Genet. 39 (2007), 1507–1511.
    • (2007) Nat. Genet. , vol.39 , pp. 1507-1511
    • Muse, G.W.1
  • 108
    • 84861857476 scopus 로고    scopus 로고
    • RNA polymerase II elongation control
    • Zhou, Q., et al. RNA polymerase II elongation control. Annu. Rev. Biochem. 81 (2012), 119–143.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 119-143
    • Zhou, Q.1
  • 109
    • 84928214306 scopus 로고    scopus 로고
    • Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks
    • Williams, L.H., et al. Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. Mol. Cell 58 (2015), 311–322.
    • (2015) Mol. Cell , vol.58 , pp. 311-322
    • Williams, L.H.1
  • 110
    • 84878860082 scopus 로고    scopus 로고
    • Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing
    • Li, J., et al. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol. Cell 50 (2013), 711–722.
    • (2013) Mol. Cell , vol.50 , pp. 711-722
    • Li, J.1
  • 111
    • 3042709472 scopus 로고    scopus 로고
    • Characterization of a novel RNA polymerase II arrest site which lacks a weak 3′ RNA-DNA hybrid
    • Hawryluk, P.J., et al. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3′ RNA-DNA hybrid. Nucleic Acids Res. 32 (2004), 1904–1916.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1904-1916
    • Hawryluk, P.J.1
  • 112
    • 45549093494 scopus 로고    scopus 로고
    • Promoter elements associated with RNA Pol II stalling in the Drosophila embryo
    • Hendrix, D.A., et al. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 7762–7767.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7762-7767
    • Hendrix, D.A.1
  • 113
    • 78751659330 scopus 로고    scopus 로고
    • Nascent transcript sequencing visualizes transcription at nucleotide resolution
    • Churchman, L.S., Weissman, J.S., Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469 (2011), 368–373.
    • (2011) Nature , vol.469 , pp. 368-373
    • Churchman, L.S.1    Weissman, J.S.2
  • 114
    • 0031585994 scopus 로고    scopus 로고
    • Spacing from the transcript 3′ end determines whether a nascent RNA hairpin interacts with RNA polymerase to prolong pausing or triggers termination
    • Chan, C., et al. Spacing from the transcript 3′ end determines whether a nascent RNA hairpin interacts with RNA polymerase to prolong pausing or triggers termination. J. Mol. Biol. 268 (1997), 54–68.
    • (1997) J. Mol. Biol. , vol.268 , pp. 54-68
    • Chan, C.1
  • 115
    • 0035838977 scopus 로고    scopus 로고
    • Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II
    • Palangat, M., Landick, R., Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II. J. Mol. Biol. 311 (2001), 265–282.
    • (2001) J. Mol. Biol. , vol.311 , pp. 265-282
    • Palangat, M.1    Landick, R.2
  • 116
    • 0032087891 scopus 로고    scopus 로고
    • Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure
    • Palangat, M., et al. Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. Mol. Cell 1 (1998), 1033–1042.
    • (1998) Mol. Cell , vol.1 , pp. 1033-1042
    • Palangat, M.1
  • 117
    • 84871913103 scopus 로고    scopus 로고
    • The role of RNA polymerase II elongation control in HIV-1 gene expression, replication, and latency
    • Nilson, K.A., Price, D.H., The role of RNA polymerase II elongation control in HIV-1 gene expression, replication, and latency. Genet. Res. Int., 2011, 2011, 726901.
    • (2011) Genet. Res. Int. , vol.2011 , pp. 726901
    • Nilson, K.A.1    Price, D.H.2
  • 118
    • 0035918157 scopus 로고    scopus 로고
    • DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation
    • Ping, Y.H., Rana, T.M., DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem. 276 (2001), 12951–12958.
    • (2001) J. Biol. Chem. , vol.276 , pp. 12951-12958
    • Ping, Y.H.1    Rana, T.M.2
  • 119
    • 0346095303 scopus 로고    scopus 로고
    • Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element
    • Fujinaga, K., et al. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24 (2004), 787–795.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 787-795
    • Fujinaga, K.1
  • 120
    • 0023513563 scopus 로고
    • Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product
    • Kao, S.Y., et al. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330 (1987), 489–493.
    • (1987) Nature , vol.330 , pp. 489-493
    • Kao, S.Y.1
  • 121
    • 0036232590 scopus 로고    scopus 로고
    • Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA
    • Yamaguchi, Y., et al. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol. Cell. Biol. 22 (2002), 2918–2927.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 2918-2927
    • Yamaguchi, Y.1
  • 122
    • 84883708671 scopus 로고    scopus 로고
    • Negative elongation factor (NELF) coordinates RNA polymerase II pausing, premature termination, and chromatin remodeling to regulate HIV transcription
    • Natarajan, M., et al. Negative elongation factor (NELF) coordinates RNA polymerase II pausing, premature termination, and chromatin remodeling to regulate HIV transcription. J. Biol. Chem. 288 (2013), 25995–26003.
    • (2013) J. Biol. Chem. , vol.288 , pp. 25995-26003
    • Natarajan, M.1
  • 123
    • 84896734318 scopus 로고    scopus 로고
    • Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions
    • Pagano, J.M., et al. Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions. PLoS Genet., 10, 2014, e1004090.
    • (2014) PLoS Genet. , vol.10 , pp. e1004090
    • Pagano, J.M.1
  • 124
    • 84896859718 scopus 로고    scopus 로고
    • Argonaute-bound small RNAs from promoter-proximal RNA polymerase II
    • Zamudio, J.R., et al. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156 (2014), 920–934.
    • (2014) Cell , vol.156 , pp. 920-934
    • Zamudio, J.R.1
  • 125
    • 84894609055 scopus 로고    scopus 로고
    • Mammalian 5′-capped microRNA precursors that generate a single microRNA
    • Xie, M., et al. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 155 (2013), 1568–1580.
    • (2013) Cell , vol.155 , pp. 1568-1580
    • Xie, M.1
  • 126
    • 77955902024 scopus 로고    scopus 로고
    • The widespread regulation of microRNA biogenesis, function and decay
    • Krol, J., et al. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11 (2010), 597–610.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 597-610
    • Krol, J.1
  • 127
    • 0003023088 scopus 로고
    • Transcriptional attenuation
    • S.L. McKnight K.R. Yamamoto Cold Spring Harbor Press
    • Landick, R., Turnbough, C.L.J., Transcriptional attenuation. McKnight, S.L., Yamamoto, K.R., (eds.) Transcriptional Regulation, 1992, Cold Spring Harbor Press, 407–446.
    • (1992) Transcriptional Regulation , pp. 407-446
    • Landick, R.1    Turnbough, C.L.J.2
  • 128
    • 84880845397 scopus 로고    scopus 로고
    • Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions
    • Melamed, Z., et al. Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions. Mol. Cell 50 (2013), 869–881.
    • (2013) Mol. Cell , vol.50 , pp. 869-881
    • Melamed, Z.1
  • 129
  • 130
    • 85027948185 scopus 로고    scopus 로고
    • RNA structural analysis by evolving SHAPE chemistry
    • Spitale, R.C., et al. RNA structural analysis by evolving SHAPE chemistry. Wiley Interdiscip. Rev. RNA 5 (2014), 867–881.
    • (2014) Wiley Interdiscip. Rev. RNA , vol.5 , pp. 867-881
    • Spitale, R.C.1
  • 131
    • 84934987335 scopus 로고    scopus 로고
    • Mod-seq: a high-throughput method for probing RNA secondary structure
    • Lin, Y., et al. Mod-seq: a high-throughput method for probing RNA secondary structure. Methods Enzymol. 558 (2015), 125–152.
    • (2015) Methods Enzymol. , vol.558 , pp. 125-152
    • Lin, Y.1
  • 132
    • 77955787630 scopus 로고    scopus 로고
    • Advances in RNA structure analysis by chemical probing
    • Weeks, K.M., Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20 (2010), 295–304.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 295-304
    • Weeks, K.M.1
  • 133
    • 0345907929 scopus 로고    scopus 로고
    • Engineering of elongation complexes of bacterial and yeast RNA polymerases
    • Komissarova, N., et al. Engineering of elongation complexes of bacterial and yeast RNA polymerases. Methods Enzymol. 371 (2003), 233–251.
    • (2003) Methods Enzymol. , vol.371 , pp. 233-251
    • Komissarova, N.1
  • 134
    • 0032534537 scopus 로고    scopus 로고
    • Co-transcriptional commitment to alternative splice site selection
    • Roberts, G.C., et al. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 26 (1998), 5568–5572.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 5568-5572
    • Roberts, G.C.1
  • 135
    • 84925225043 scopus 로고    scopus 로고
    • SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing
    • Loughrey, D., et al. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res., 42, 2014.
    • (2014) Nucleic Acids Res. , vol.42
    • Loughrey, D.1
  • 136
    • 84893351549 scopus 로고    scopus 로고
    • Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo
    • Rouskin, S., et al. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505 (2014), 701–705.
    • (2014) Nature , vol.505 , pp. 701-705
    • Rouskin, S.1
  • 137
    • 84893427735 scopus 로고    scopus 로고
    • In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features
    • Ding, Y., et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505 (2014), 696–700.
    • (2014) Nature , vol.505 , pp. 696-700
    • Ding, Y.1
  • 138
    • 84893358533 scopus 로고    scopus 로고
    • Landscape and variation of RNA secondary structure across the human transcriptome
    • Wan, Y., et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505 (2014), 706–709.
    • (2014) Nature , vol.505 , pp. 706-709
    • Wan, Y.1
  • 139
    • 84903768300 scopus 로고    scopus 로고
    • Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout
    • Zhang, J., Ferré-D'Amaré, A.R., Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout. Mol. Cell 55 (2014), 148–155.
    • (2014) Mol. Cell , vol.55 , pp. 148-155
    • Zhang, J.1    Ferré-D'Amaré, A.R.2
  • 140
    • 3843118724 scopus 로고    scopus 로고
    • Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro
    • Grundy, F.J., Henkin, T.M., Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro. J. Bacteriol. 186 (2004), 5392–5399.
    • (2004) J. Bacteriol. , vol.186 , pp. 5392-5399
    • Grundy, F.J.1    Henkin, T.M.2
  • 141
    • 0037143628 scopus 로고    scopus 로고
    • tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome
    • Grundy, F.J., et al. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 11121–11126.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 11121-11126
    • Grundy, F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.