메뉴 건너뛰기




Volumn 36, Issue 4, 2012, Pages 2259-2269

Discovering mammography-based machine learning classifiers for breast cancer diagnosis

Author keywords

Breast cancer CAD; Machine learning classifiers; Mammography classifiers

Indexed keywords

ARTICLE; ARTIFACT REDUCTION; BREAST CANCER; CLASSIFIER; CLUSTER ANALYSIS; COMPUTER ASSISTED DIAGNOSIS; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; MAJOR CLINICAL STUDY; MAMMOGRAPHY; RECEIVER OPERATING CHARACTERISTIC; ARTIFICIAL INTELLIGENCE; BREAST TUMOR; CLASSIFICATION; COMPUTER SYSTEM; FEMALE; INSTRUMENTATION; METHODOLOGY;

EID: 84873050658     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-011-9693-2     Document Type: Article
Times cited : (90)

References (42)
  • 1
    • 18444412609 scopus 로고    scopus 로고
    • Global trends in breast cancer incidence and mortality 1973-1997
    • 10.1093/ije/dyh414 April 1, 2005
    • Althuis, M. D., et al., Global trends in breast cancer incidence and mortality 1973-1997. Int. J. Epidemiol. 34:405-412, 2005. April 1, 2005.
    • (2005) Int. J. Epidemiol. , vol.34 , pp. 405-412
    • Althuis, M.D.1
  • 3
    • 0035339809 scopus 로고    scopus 로고
    • Beyond randomized controlled trials: Organized mammographic screening substantially reduces breast carcinoma mortality
    • 10.1002/1097-0142(20010501)91:9<1724: AID-CNCR1190>3.0.CO;2-V
    • Tabár, L., et al., Beyond randomized controlled trials: organized mammographic screening substantially reduces breast carcinoma mortality. Cancer 91:1724-1731, 2001.
    • (2001) Cancer , vol.91 , pp. 1724-1731
    • Tabár, L.1
  • 4
    • 0029876126 scopus 로고    scopus 로고
    • Mammography screening: An incremental cost effectiveness analysis of double versus single reading of mammograms
    • 10.1136/bmj.312.7034.809
    • Brown, J., et al., Mammography screening: an incremental cost effectiveness analysis of double versus single reading of mammograms, BMJ (Clinical research ed.) 312:809-812, 1996.
    • (1996) BMJ (Clinical Research Ed.) , vol.312 , pp. 809-812
    • Brown, J.1
  • 5
    • 84882895823 scopus 로고    scopus 로고
    • Computer-Aided Detection and Diagnosis in Mammography
    • B. Al (eds) Second Academic ed Burlington 10.1016/B978-012119792-6/50130- 3
    • Sampat, M. P., et al., Computer-Aided Detection and Diagnosis in Mammography. In: Al, B. (Ed.), Handbook of Image and Video Processing, Secondth edition. Academic, ed Burlington, pp. 1195-1217, 2005.
    • (2005) Handbook of Image and Video Processing , pp. 1195-1217
    • Sampat, M.P.1
  • 6
    • 38549181889 scopus 로고    scopus 로고
    • Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques
    • ed: Springer Berlin/Heidelberg
    • López, Y., et al., "Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques,". In: Progress in Pattern Recognition, Image Analysis and Applications. vol. Volume 4756/2008, ed: Springer Berlin/Heidelberg, 2008, pp. 803-811.
    • (2008) Progress in Pattern Recognition, Image Analysis and Applications , vol.4756 , pp. 803-811
    • López, Y.1
  • 7
    • 55349108936 scopus 로고    scopus 로고
    • Computer aided diagnosis system to detect breast cancer pathological lesions
    • ed: Springer Berlin/Heidelberg
    • López, Y., et al., "Computer aided diagnosis system to detect breast cancer pathological lesions," In: Progress in Pattern Recognition, Image Analysis and Applications. vol. Volume 5197/2008, ed: Springer Berlin/Heidelberg, 2008, pp. 453-460.
    • (2008) Progress in Pattern Recognition, Image Analysis and Applications , vol.5197 , pp. 453-460
    • López, Y.1
  • 8
    • 84877579137 scopus 로고    scopus 로고
    • Exploiting eInfrastructures for medical image storage and analysis: A grid application for mammography CAD
    • Innsbruck, Austria
    • Ramos-Pollan, R. et al., "Exploiting eInfrastructures for medical image storage and analysis: A grid application for mammography CAD,". In: The Seventh IASTED International Conference on Biomedical Engineering, Innsbruck, Austria, 2010
    • (2010) The Seventh IASTED International Conference on Biomedical Engineering
    • Ramos-Pollan, R.1
  • 9
    • 84877576699 scopus 로고    scopus 로고
    • Grid-based architecture to host multiple repositories: A mammography image analysis use case
    • Valencia, Spain
    • Ramos-Pollan, R., et al., "Grid-based architecture to host multiple repositories: A mammography image analysis use case,". In: III Iberian Grid Infrastructure Conference Proceedings, Valencia, Spain, 2009, pp. 327-338
    • (2009) III Iberian Grid Infrastructure Conference Proceedings , pp. 327-338
    • Ramos-Pollan, R.1
  • 10
    • 84877576670 scopus 로고    scopus 로고
    • Building medical image repositories and CAD systems on grid infrastructures: A mammograms case
    • University of Aveiro. Aveiro, Portugal
    • Ramos-Pollan, R., et al., "Building medical image repositories and CAD systems on grid infrastructures: A mammograms case,". In: 15th edition of the Portuguese Conference on Pattern Recognition., University of Aveiro. Aveiro, Portugal, 2009.
    • (2009) 15th Edition of the Portuguese Conference on Pattern Recognition
    • Ramos-Pollan, R.1
  • 11
    • 84877575903 scopus 로고    scopus 로고
    • Grid computing for breast cancer CAD. A pilot experience in a medical environment
    • Minho, Portugal
    • Ramos-Pollan, R., et al., "Grid computing for breast cancer CAD. A pilot experience in a medical environment,". In: 4th Iberian Grid Infrastructure Conference, Minho, Portugal, 2010, pp. 307-318.
    • (2010) 4th Iberian Grid Infrastructure Conference , pp. 307-318
    • Ramos-Pollan, R.1
  • 13
    • 63649088909 scopus 로고    scopus 로고
    • Content-based organisation of virtual repositories of DICOM objects
    • 10.1016/j.future.2008.12.004
    • Espert, I. B., et al., Content-based organisation of virtual repositories of DICOM objects. Future Gener Comput. Syst. 25:627-637, 2009.
    • (2009) Future Gener Comput. Syst. , vol.25 , pp. 627-637
    • Espert, I.B.1
  • 15
    • 0032028944 scopus 로고    scopus 로고
    • Snakes, shapes, and gradient vector flow
    • 0973.94003 10.1109/83.661186
    • Chenyang, X., and Prince, J. L., Snakes, shapes, and gradient vector flow. Image Process. IEEE Trans. 7:359-369, 1998.
    • (1998) Image Process. IEEE Trans. , vol.7 , pp. 359-369
    • Chenyang, X.1    Prince, J.L.2
  • 16
    • 31744438649 scopus 로고    scopus 로고
    • United snakes
    • 10.1016/j.media.2005.09.002
    • Liang, J., et al., United snakes. Med. Image Anal. 10:215-233, 2006.
    • (2006) Med. Image Anal. , vol.10 , pp. 215-233
    • Liang, J.1
  • 17
    • 0037272440 scopus 로고    scopus 로고
    • A feature set for cytometry on digitized microscopic images
    • Rodenacker, K., A feature set for cytometry on digitized microscopic images. Cell Pathol 25:1-36, 2001.
    • (2001) Cell Pathol , vol.25 , pp. 1-36
    • Rodenacker, K.1
  • 18
    • 0015680481 scopus 로고
    • Textural features for image classification
    • 348958 10.1109/TSMC.1973.4309314
    • Haralick, R., et al., Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3:610-621, 1973.
    • (1973) IEEE Trans. Syst. Man Cybern. , vol.3 , pp. 610-621
    • Haralick, R.1
  • 19
    • 75749149659 scopus 로고    scopus 로고
    • A review of automatic mass detection and segmentation in mammographic images
    • 10.1016/j.media.2009.12.005
    • Oliver, A., et al., A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 14:87-110, 2010.
    • (2010) Med. Image Anal. , vol.14 , pp. 87-110
    • Oliver, A.1
  • 20
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: An update
    • Mark Hall, et al., "The WEKA data mining software: an update," SIGKDD Explorations, vol. 11, 2009.
    • (2009) SIGKDD Explorations , vol.11
    • Hall, M.1
  • 21
    • 59449110510 scopus 로고    scopus 로고
    • Improving performance of computer-Aided detection scheme by combining results from two machine learning classifiers
    • 10.1016/j.acra.2008.08.012
    • Park, S. C., et al., Improving performance of computer-Aided detection scheme by combining results from two machine learning classifiers. Acad. Radiol. 16:266-274, 2009.
    • (2009) Acad. Radiol. , vol.16 , pp. 266-274
    • Park, S.C.1
  • 22
    • 71249094411 scopus 로고    scopus 로고
    • Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer
    • 10.1016/j.eswa.2009.10.016
    • Verma, B., et al., Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst. Appl. 37:3344-3351, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3344-3351
    • Verma, B.1
  • 23
    • 33744535368 scopus 로고    scopus 로고
    • Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
    • 10.1016/j.artmed.2006.03.002
    • Mavroforakis, M. E., et al., Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif. Intell. Med. 37:145-162, 2006.
    • (2006) Artif. Intell. Med. , vol.37 , pp. 145-162
    • Mavroforakis, M.E.1
  • 24
    • 15744379052 scopus 로고    scopus 로고
    • Significance analysis of qualitative mammographic features, using linear classifiers, neural networks and support vector machines
    • 10.1016/j.ejrad.2004.12.015
    • Mavroforakis, M., et al., Significance analysis of qualitative mammographic features, using linear classifiers, neural networks and support vector machines. Eur. J. Radiol. 54:80-89, 2005.
    • (2005) Eur. J. Radiol. , vol.54 , pp. 80-89
    • Mavroforakis, M.1
  • 25
    • 7444251681 scopus 로고    scopus 로고
    • A case study in feature invention for breast cancer diagnosis using X-ray scatter images
    • T.D. Gedeon L.C.C. Fung (eds) Springer Berlin/Heidelberg 10.1007/978-3-540-24581-0-58
    • Butler, S. M., et al., A case study in feature invention for breast cancer diagnosis using X-ray scatter images. In: Gedeon, T. D., and Fung, L. C. C. (Eds.), AI 2003: Advances in Artificial Intelligence. vol. 2903. Springer, Berlin/Heidelberg, pp. 677-685, 2003.
    • (2003) AI 2003: Advances in Artificial Intelligence. Vol. 2903 , pp. 677-685
    • Butler, S.M.1
  • 26
    • 17044428072 scopus 로고    scopus 로고
    • Comparative analysis of logistic regression and artificial neural network for computer-Aided diagnosis of breast masses
    • 10.1016/j.acra.2004.12.016
    • Song, J. H., et al., Comparative analysis of logistic regression and artificial neural network for computer-Aided diagnosis of breast masses. Acad. Radiol. 12:487-495, 2005.
    • (2005) Acad. Radiol. , vol.12 , pp. 487-495
    • Song, J.H.1
  • 27
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • 1047.68119 10.1016/S0167-8655(03)00047-3
    • Abonyi, J., and Szeifert, F., Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit. Lett. 24:2195-2207, 2003.
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 28
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • 10.1016/S0933-3657(99)00041-X
    • Setiono, R., Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18:205-219, 2000.
    • (2000) Artif. Intell. Med. , vol.18 , pp. 205-219
    • Setiono, R.1
  • 29
    • 77957898242 scopus 로고    scopus 로고
    • A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification
    • 10.1016/j.asoc.2009.12.023
    • Fan, C.-Y., et al., A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl. Soft Comput. 11:632-644, 2011.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 632-644
    • Fan, C.-Y.1
  • 30
    • 78650280535 scopus 로고    scopus 로고
    • Support vector machine for diagnosis cancer disease: A comparative study
    • 10.1016/j.eij.2010.10.005
    • Sweilam, N. H., et al., Support vector machine for diagnosis cancer disease: A comparative study. Egypt. Inform. J. 11:81-92, 2010.
    • (2010) Egypt. Inform. J. , vol.11 , pp. 81-92
    • Sweilam, N.H.1
  • 35
    • 84877583539 scopus 로고    scopus 로고
    • The gLite middleware
    • The gLite middleware. Available: http://glite.web.cern.ch
  • 36
    • 84877579043 scopus 로고    scopus 로고
    • Introducing ROC curves as error measure functions. A new approach to train ANN-based biomedical data classifiers
    • Sao Paolo, Brasil
    • Ramos Pollan, R., et al., "Introducing ROC curves as error measure functions. A new approach to train ANN-based biomedical data classifiers,". In: 15th Iberoamerican Congress on Pattern Recognition, Sao Paolo, Brasil, 2010.
    • (2010) 15th Iberoamerican Congress on Pattern Recognition
    • Ramos Pollan, R.1
  • 37
    • 34447314778 scopus 로고    scopus 로고
    • Evaluating computer-Aided detection algorithms
    • 10.1118/1.2736289
    • Yoon, H. J., et al., Evaluating computer-Aided detection algorithms. Med. Phys. 34:2024-2038, 2007.
    • (2007) Med. Phys. , vol.34 , pp. 2024-2038
    • Yoon, H.J.1
  • 38
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • 10.1016/j.patrec.2005.10.010
    • Fawcett, T., An introduction to ROC analysis. Pattern Recognit. Lett. 27:861-874, 2006.
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 40
    • 65749119811 scopus 로고    scopus 로고
    • Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap
    • 05689130 10.1016/j.csda.2009.04.009
    • Kim, J.-H., Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 53:3735-3745, 2009.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 3735-3745
    • Kim, J.-H.1
  • 41
    • 84945737762 scopus 로고
    • A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation
    • 694281
    • Efron, B., and Gong, G., A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. Am. Stat. 37:36-48, 1983.
    • (1983) Am. Stat. , vol.37 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 42
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • 711106 0543.62079
    • Efron, B., Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Am. Stat. Assoc. 78:316-331, 1983.
    • (1983) J. Am. Stat. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.