메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2064-2071

Detecting avocados to Zucchinis: What have we done, and where are we going?

Author keywords

[No Author keywords available]

Indexed keywords

DATA PROCESSING; DETECTORS; EQUIPMENT TESTING;

EID: 84898805253     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.258     Document Type: Conference Paper
Times cited : (81)

References (25)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselares, and V. Ferrari. Measuring the objectness of image windows. In PAMI, 2012.
    • (2012) PAMI
    • Alexe, B.1    Deselares, T.2    Ferrari, V.3
  • 2
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012.
    • (2012) CVPR
    • Arandjelovic, R.1    Zisserman, A.2
  • 8
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few examples: an incremental bayesian approach tested on 101 object categories. In CVPR, 2004.
    • (2004) CVPR
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 9
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32, 2010.
    • (2010) PAMI , vol.32
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 10
    • 84887374674 scopus 로고    scopus 로고
    • Diagnosing error in object detectors
    • D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In ECCV, 2012.
    • (2012) ECCV
    • Hoiem, D.1    Chodpathumwan, Y.2    Dai, Q.3
  • 11
    • 34948897542 scopus 로고    scopus 로고
    • 3D layout CRF for multiview object class recognition and segmentation
    • D. Hoiem, C. Rother, and J.Winn. 3D layout CRF for multiview object class recognition and segmentation. In CVPR, 2007.
    • (2007) CVPR
    • Hoiem, D.1    Rother, C.2    Winn, J.3
  • 12
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 13
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 14
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard
    • N. Pinto, D. Cox, and J. DiCarlo. Why is real-world visual object recognition hard PLoS Comp Biology, 4, 2008.
    • (2008) PLoS Comp Biology , vol.4
    • Pinto, N.1    Cox, D.2    Dicarlo, J.3
  • 15
    • 51949083482 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • B. Russell, A. Torralba, K. Murphy, and W. T. Freeman. LabelMe: a database and web-based tool for image annotation. IJCV, 2007.
    • (2007) IJCV
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.T.4
  • 16
    • 80052885179 scopus 로고    scopus 로고
    • High-dim signature compression for large-scale image classification
    • J. Sanchez and F. Perronnin. High-dim. signature compression for large-scale image classification. In CVPR, 2011.
    • (2011) CVPR
    • Sanchez, J.1    Perronnin, F.2
  • 17
    • 84866552328 scopus 로고    scopus 로고
    • Modeling spatial layout of images beyond spatial pyramids
    • J. Sanchez, F. Perronnin, and T. de Campos. Modeling spatial layout of images beyond spatial pyramids. In PRL, 2012.
    • (2012) PRL
    • Sanchez, J.1    Perronnin, F.2    De Campos, T.3
  • 18
    • 80052908300 scopus 로고    scopus 로고
    • An unbiased look at dataset bias
    • A. Torralba and A. Efros. An unbiased look at dataset bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.2
  • 19
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. In PAMI, 2008.
    • (2008) PAMI
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 22
    • 85020603202 scopus 로고    scopus 로고
    • An HOG-LBP human detector with partial occlusion handling
    • X.Wang, T. Han, and S. Yan. An HOG-LBP human detector with partial occlusion handling. In ICCV, 2009.
    • (2009) ICCV
    • Wang, X.1    Han, T.2    Yan, S.3
  • 23
    • 33745943636 scopus 로고    scopus 로고
    • Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors
    • B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In ICCV, 2005.
    • (2005) ICCV
    • Wu, B.1    Nevatia, R.2
  • 24
    • 77955988947 scopus 로고    scopus 로고
    • SUN database: Large-scale scene recognition from Abbey to Zoo
    • J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from Abbey to Zoo. CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.3    Oliva, A.4    Torralba, A.5
  • 25
    • 84898436991 scopus 로고    scopus 로고
    • Do we need more training data or better models for object detection
    • X. Zhu, C. Vondrick, D. Ramanan, and C. C. Fowlkes. Do we need more training data or better models for object detection. In BMVC, 2012.
    • (2012) BMVC
    • Zhu, X.1    Vondrick, C.2    Ramanan, D.3    Fowlkes, C.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.