-
1
-
-
84866688216
-
Measuring the objectness of image windows
-
B. Alexe, T. Deselares, and V. Ferrari. Measuring the objectness of image windows. In PAMI, 2012.
-
(2012)
PAMI
-
-
Alexe, B.1
Deselares, T.2
Ferrari, V.3
-
2
-
-
84866678025
-
Three things everyone should know to improve object retrieval
-
R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012.
-
(2012)
CVPR
-
-
Arandjelovic, R.1
Zisserman, A.2
-
3
-
-
80052915062
-
-
J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. Large Scale Visual Recognition Challenge. http://www.image-net.org/challenges/LSVRC/ 2012/, 2012.
-
(2012)
Large Scale Visual Recognition Challenge
-
-
Deng, J.1
Berg, A.2
Satheesh, S.3
Su, H.4
Khosla, A.5
Fei-Fei, L.6
-
4
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: a large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
5
-
-
70450161428
-
An empirical study of context in object detection
-
S. Divvala, D. Hoiem, J. Hays, A. Efros, and M. Hebert. An empirical study of context in object detection. In CVPR, 2009.
-
(2009)
CVPR
-
-
Divvala, S.1
Hoiem, D.2
Hays, J.3
Efros, A.4
Hebert, M.5
-
7
-
-
77951298115
-
The pascal Visual Object Classes (VOC) challenge
-
June
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal Visual Object Classes (VOC) challenge. IJCV, 88(2):303-338, June 2010.
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
8
-
-
84932617705
-
Learning generative visual models from few examples: An incremental bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few examples: an incremental bayesian approach tested on 101 object categories. In CVPR, 2004.
-
(2004)
CVPR
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
9
-
-
77955422240
-
Object detection with discriminatively trained part based models
-
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32, 2010.
-
(2010)
PAMI
, vol.32
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
11
-
-
34948897542
-
3D layout CRF for multiview object class recognition and segmentation
-
D. Hoiem, C. Rother, and J.Winn. 3D layout CRF for multiview object class recognition and segmentation. In CVPR, 2007.
-
(2007)
CVPR
-
-
Hoiem, D.1
Rother, C.2
Winn, J.3
-
12
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
13
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
-
(2004)
IJCV
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
14
-
-
38949193299
-
Why is real-world visual object recognition hard
-
N. Pinto, D. Cox, and J. DiCarlo. Why is real-world visual object recognition hard PLoS Comp Biology, 4, 2008.
-
(2008)
PLoS Comp Biology
, vol.4
-
-
Pinto, N.1
Cox, D.2
Dicarlo, J.3
-
16
-
-
80052885179
-
High-dim signature compression for large-scale image classification
-
J. Sanchez and F. Perronnin. High-dim. signature compression for large-scale image classification. In CVPR, 2011.
-
(2011)
CVPR
-
-
Sanchez, J.1
Perronnin, F.2
-
17
-
-
84866552328
-
Modeling spatial layout of images beyond spatial pyramids
-
J. Sanchez, F. Perronnin, and T. de Campos. Modeling spatial layout of images beyond spatial pyramids. In PRL, 2012.
-
(2012)
PRL
-
-
Sanchez, J.1
Perronnin, F.2
De Campos, T.3
-
18
-
-
80052908300
-
An unbiased look at dataset bias
-
A. Torralba and A. Efros. An unbiased look at dataset bias. In CVPR, 2011.
-
(2011)
CVPR
-
-
Torralba, A.1
Efros, A.2
-
19
-
-
54749092170
-
80 million tiny images: A large data set for nonparametric object and scene recognition
-
A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. In PAMI, 2008.
-
(2008)
PAMI
-
-
Torralba, A.1
Fergus, R.2
Freeman, W.3
-
22
-
-
85020603202
-
An HOG-LBP human detector with partial occlusion handling
-
X.Wang, T. Han, and S. Yan. An HOG-LBP human detector with partial occlusion handling. In ICCV, 2009.
-
(2009)
ICCV
-
-
Wang, X.1
Han, T.2
Yan, S.3
-
23
-
-
33745943636
-
Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors
-
B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In ICCV, 2005.
-
(2005)
ICCV
-
-
Wu, B.1
Nevatia, R.2
-
24
-
-
77955988947
-
SUN database: Large-scale scene recognition from Abbey to Zoo
-
J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from Abbey to Zoo. CVPR, 2010.
-
(2010)
CVPR
-
-
Xiao, J.1
Hays, J.2
Ehinger, K.3
Oliva, A.4
Torralba, A.5
-
25
-
-
84898436991
-
Do we need more training data or better models for object detection
-
X. Zhu, C. Vondrick, D. Ramanan, and C. C. Fowlkes. Do we need more training data or better models for object detection. In BMVC, 2012.
-
(2012)
BMVC
-
-
Zhu, X.1
Vondrick, C.2
Ramanan, D.3
Fowlkes, C.C.4
|