메뉴 건너뛰기




Volumn 63, Issue 1, 2015, Pages 19-31

Improving the Mann-Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography

Author keywords

Breast cancer CADx; Feature selection methods; Machine learning algorithms; Mann Whitney U test; Redundancy analysis; UFilter method

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; COMPUTER AIDED DIAGNOSIS; COST EFFECTIVENESS; DISCRIMINANT ANALYSIS; DISEASES; FEATURE EXTRACTION; IMAGE RETRIEVAL; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; REDUNDANCY; STATISTICAL TESTS; TESTING;

EID: 84923943411     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2014.12.004     Document Type: Article
Times cited : (68)

References (71)
  • 2
    • 34047113813 scopus 로고    scopus 로고
    • An introduction to feature extraction
    • Springer Berlin/Heidelberg
    • Guyon I., Elisseeff A. An introduction to feature extraction. Feature extraction 2006, vol. 207:1-25. Springer Berlin/Heidelberg. 10.1007/978-3-540-35488-8_1.
    • (2006) Feature extraction , vol.207 , pp. 1-25
    • Guyon, I.1    Elisseeff, A.2
  • 3
    • 0031688551 scopus 로고    scopus 로고
    • Near-infrared spectroscopy in the pharmaceutical industry
    • Blanco M., Coello J., Iturriaga H., Maspoch S., de la Pezuela C. Near-infrared spectroscopy in the pharmaceutical industry. Analyst 1998, 123:135R-150R. 10.1039/a802531b.
    • (1998) Analyst , vol.123 , pp. 135R-150R
    • Blanco, M.1    Coello, J.2    Iturriaga, H.3    Maspoch, S.4    de la Pezuela, C.5
  • 4
    • 14944383798 scopus 로고    scopus 로고
    • The evolving role of natural products in drug discovery
    • Koehn F.E., Carter G.T. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005, 4:206-220. 10.1038/nrd1657.
    • (2005) Nat Rev Drug Discov , vol.4 , pp. 206-220
    • Koehn, F.E.1    Carter, G.T.2
  • 5
    • 79960517689 scopus 로고    scopus 로고
    • Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier
    • Hashemi H., Tax D.M.J., Duin R.P.W., Javaherian A., de Groot P. Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier. Nonlinear Process Geophys 2008, 15:863-871. 10.5194/npg-15-863-2008.
    • (2008) Nonlinear Process Geophys , vol.15 , pp. 863-871
    • Hashemi, H.1    Tax, D.M.J.2    Duin, R.P.W.3    Javaherian, A.4    de Groot, P.5
  • 7
    • 78049398950 scopus 로고    scopus 로고
    • Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring
    • Chanwoo K., Stern R.M. Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) 2010, 4574-4577. 10.1109/ICASSP.2010.5495570.
    • (2010) 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) , pp. 4574-4577
    • Chanwoo, K.1    Stern, R.M.2
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 2004, 5:1205-1224.
    • (2004) J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 12
    • 0042765643 scopus 로고    scopus 로고
    • Bacteria classification using Cyranose 320 electronic nose
    • Dutta R., Hines E.L., Gardner J.W., Boilot P. Bacteria classification using Cyranose 320 electronic nose. BioMed Eng Online 2002, 1:4. 10.1186/1475-925x-1-4.
    • (2002) BioMed Eng Online , vol.1 , pp. 4
    • Dutta, R.1    Hines, E.L.2    Gardner, J.W.3    Boilot, P.4
  • 13
    • 38549181889 scopus 로고    scopus 로고
    • Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques
    • Springer, Berlin/Heidelberg, 4756/2008
    • López Y., Novoa A., Guevara M., Silva A. Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques. Progress in pattern recognition image analysis and applications 2008, vol. 4756/2008:803-811. Springer, Berlin/Heidelberg. 10.1007/978-3-540-76725-1_83.
    • (2008) Progress in pattern recognition image analysis and applications , pp. 803-811
    • López, Y.1    Novoa, A.2    Guevara, M.3    Silva, A.4
  • 14
    • 46549086330 scopus 로고    scopus 로고
    • Medical data mining by fuzzy modeling with selected features
    • Ghazavi S.N., Liao T.W. Medical data mining by fuzzy modeling with selected features. Artif Intell Med 2008, 43:195-206. 10.1016/j.artmed.2008.04.004.
    • (2008) Artif Intell Med , vol.43 , pp. 195-206
    • Ghazavi, S.N.1    Liao, T.W.2
  • 15
    • 4544361200 scopus 로고    scopus 로고
    • Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms
    • Soltanian-Zadeh H., Rafiee-Rad F., Pourabdollah-Nejad S.D. Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms. Pattern Recognit 2004, 37:1973-1986. 10.1016/j.patcog.2003.03.001.
    • (2004) Pattern Recognit , vol.37 , pp. 1973-1986
    • Soltanian-Zadeh, H.1    Rafiee-Rad, F.2    Pourabdollah-Nejad, S.D.3
  • 16
    • 25644432883 scopus 로고    scopus 로고
    • Computer-aided detection of breast masses on full field digital mammograms
    • Wei J., Sahiner B., Hadjiiski L.M., Chan H.-P., Petrick N., Helvie M.A., et al. Computer-aided detection of breast masses on full field digital mammograms. Med Phys 2005, 32:2827-2838. 10.1118/1.1997327.
    • (2005) Med Phys , vol.32 , pp. 2827-2838
    • Wei, J.1    Sahiner, B.2    Hadjiiski, L.M.3    Chan, H.-P.4    Petrick, N.5    Helvie, M.A.6
  • 17
    • 0346668291 scopus 로고    scopus 로고
    • Classification of clustered microcalcifications using a Shape Cognitron neural network
    • Lee S.K., Chung P.C., Chang C.I., Lo C.S., Lee T., Hsu G.C., et al. Classification of clustered microcalcifications using a Shape Cognitron neural network. Neural Netw 2003, 16:121-132. 10.1016/S0893-6080(02)00164-8.
    • (2003) Neural Netw , vol.16 , pp. 121-132
    • Lee, S.K.1    Chung, P.C.2    Chang, C.I.3    Lo, C.S.4    Lee, T.5    Hsu, G.C.6
  • 18
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517. 10.1093/bioinformatics/btm344.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 20
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu H., Li J., Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform 2002, 13:51-60.
    • (2002) Genome Inform , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 22
    • 63249112814 scopus 로고
    • 39 Dimensionality and sample size considerations in pattern recognition practice
    • Elsevier
    • Jain A.K., Chandrasekaran B. 39 Dimensionality and sample size considerations in pattern recognition practice. Handbook of statistics 1982, vol. 2:835-855. Elsevier. 10.1016/S0169-7161(82)02042-2.
    • (1982) Handbook of statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, B.2
  • 25
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, D. Sleeman, P. Edwards (Eds.)
    • Kira K., Rendell L.A. A practical approach to feature selection. ML92 Proceedings of the ninth international workshop on Machine learning 1992, 249-256. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. D. Sleeman, P. Edwards (Eds.).
    • (1992) ML92 Proceedings of the ninth international workshop on Machine learning , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 26
    • 3543058847 scopus 로고    scopus 로고
    • Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents
    • Prados J., Kalousis A., Sanchez J.C., Allard L., Carrette O., Hilario M. Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents. Proteomics 2004, 4:2320-2332. 10.1002/pmic.200400857.
    • (2004) Proteomics , vol.4 , pp. 2320-2332
    • Prados, J.1    Kalousis, A.2    Sanchez, J.C.3    Allard, L.4    Carrette, O.5    Hilario, M.6
  • 32
    • 33750687026 scopus 로고    scopus 로고
    • Committee American College of Radiology (ACR) ACR BIRADS - mammography
    • American College of Radiology, Reston, VA, A.C.o. Radiology (Ed.)
    • Committee American College of Radiology (ACR) ACR BIRADS - mammography. ACR breast imaging reporting and data system, breast imaging atlas 2003, American College of Radiology, Reston, VA. A.C.o. Radiology (Ed.).
    • (2003) ACR breast imaging reporting and data system, breast imaging atlas
  • 35
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., Liu H. Feature selection for classification. Intell Data Anal 1997, 1:131-156. 10.3233/IDA-1997-1302.
    • (1997) Intell Data Anal , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 36
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte R.C. Very simple classification rules perform well on most commonly used datasets. Mach Learn 1993, 11:63-91. 10.1023/A:1022631118932.
    • (1993) Mach Learn , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 37
    • 84865540205 scopus 로고    scopus 로고
    • A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine
    • Malar E., Kandaswamy A., Chakravarthy D., Giri Dharan A. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Comput Biol Med 2012, 42:898-905. 10.1016/j.compbiomed.2012.07.001.
    • (2012) Comput Biol Med , vol.42 , pp. 898-905
    • Malar, E.1    Kandaswamy, A.2    Chakravarthy, D.3    Giri Dharan, A.4
  • 38
    • 84923937328 scopus 로고    scopus 로고
    • Neural networks for the classification of benign and malignant patters in digital mammograms
    • IGI Global, Hershey, NY, USA, V. Sugumaran (Ed.)
    • Verma B., Panchal R. Neural networks for the classification of benign and malignant patters in digital mammograms. Intelligent information technologies: concepts, methodologies, tools, and applications 2008, 947-967. IGI Global, Hershey, NY, USA. 10.4018/978-1-59904-941-0.ch056. V. Sugumaran (Ed.).
    • (2008) Intelligent information technologies: concepts, methodologies, tools, and applications , pp. 947-967
    • Verma, B.1    Panchal, R.2
  • 39
    • 33746659809 scopus 로고    scopus 로고
    • A completely automated CAD system for mass detection in a large mammographic database
    • Bellotti R., De Carlo F., Tangaro S., Gargano G., Maggipinto G., Castellano M., et al. A completely automated CAD system for mass detection in a large mammographic database. Med Phys 2006, 33:3066-3075.
    • (2006) Med Phys , vol.33 , pp. 3066-3075
    • Bellotti, R.1    De Carlo, F.2    Tangaro, S.3    Gargano, G.4    Maggipinto, G.5    Castellano, M.6
  • 40
    • 19344363582 scopus 로고    scopus 로고
    • Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines
    • Papadopoulos A., Fotiadis D.I., Likas A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artif Intell Med 2005, 34:141-150. 10.1016/j.artmed.2004.10.001.
    • (2005) Artif Intell Med , vol.34 , pp. 141-150
    • Papadopoulos, A.1    Fotiadis, D.I.2    Likas, A.3
  • 42
    • 84878404694 scopus 로고    scopus 로고
    • Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis
    • International Society for Optics and Photonics, Lake Buena Vista (Orlando Area), Florida, USA, C.L. Novak, S. Aylward (Eds.)
    • Pérez N., Guevara M.A., Silva A. Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis. SPIE medical imaging 2013 2013, 867022-1-867022-14. International Society for Optics and Photonics, Lake Buena Vista (Orlando Area), Florida, USA. 10.1117/12.2007912. C.L. Novak, S. Aylward (Eds.).
    • (2013) SPIE medical imaging 2013 , pp. 8670221-86702214
    • Pérez, N.1    Guevara, M.A.2    Silva, A.3
  • 43
    • 10844273163 scopus 로고    scopus 로고
    • A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography
    • Ping Z., Verma B., Kuldeep K. A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography. IEEE International Joint Conference on Neural Networks, vol. 3 2004, 2303-2308. 10.1109/IJCNN.2004.1380985.
    • (2004) IEEE International Joint Conference on Neural Networks, vol. 3 , pp. 2303-2308
    • Ping, Z.1    Verma, B.2    Kuldeep, K.3
  • 44
    • 33744535368 scopus 로고    scopus 로고
    • Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
    • Mavroforakis M.E., Georgiou H.V., Dimitropoulos N., Cavouras D., Theodoridis S. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med 2006, 37:145-162. 10.1016/j.artmed.2006.03.002.
    • (2006) Artif Intell Med , vol.37 , pp. 145-162
    • Mavroforakis, M.E.1    Georgiou, H.V.2    Dimitropoulos, N.3    Cavouras, D.4    Theodoridis, S.5
  • 46
    • 24344463437 scopus 로고    scopus 로고
    • Image segmentation feature selection and pattern classification for mammographic microcalcifications
    • Fu J.C., Lee S.K., Wong S.T., Yeh J.Y., Wang A.H., Wu H.K. Image segmentation feature selection and pattern classification for mammographic microcalcifications. Comput Med Imaging Graphics 2005, 29:419-429. 10.1016/j.compmedimag.2005.03.002.
    • (2005) Comput Med Imaging Graphics , vol.29 , pp. 419-429
    • Fu, J.C.1    Lee, S.K.2    Wong, S.T.3    Yeh, J.Y.4    Wang, A.H.5    Wu, H.K.6
  • 47
    • 37549049420 scopus 로고    scopus 로고
    • Characterization of mammographic masses based on level set segmentation with new image features and patient information
    • Shi J., Sahiner B., Chan H.P., Ge J., Hadjiiski L., Helvie M.A., et al. Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 2008, 35:280-290. 10.1118/1.2820630.
    • (2008) Med Phys , vol.35 , pp. 280-290
    • Shi, J.1    Sahiner, B.2    Chan, H.P.3    Ge, J.4    Hadjiiski, L.5    Helvie, M.A.6
  • 48
    • 34447514175 scopus 로고    scopus 로고
    • Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors
    • Jesneck J.L., Lo J.Y., Baker J.A. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology 2007, 244:390-398. 10.1148/radiol.2442060712.
    • (2007) Radiology , vol.244 , pp. 390-398
    • Jesneck, J.L.1    Lo, J.Y.2    Baker, J.A.3
  • 49
    • 33744832647 scopus 로고    scopus 로고
    • Breast cancer CADx based on BI-RAds descriptors from two mammographic views
    • Gupta S., Chyn P.F., Markey M.K. Breast cancer CADx based on BI-RAds descriptors from two mammographic views. Med Phys 2006, 33:1810-1817.
    • (2006) Med Phys , vol.33 , pp. 1810-1817
    • Gupta, S.1    Chyn, P.F.2    Markey, M.K.3
  • 50
    • 3042640716 scopus 로고    scopus 로고
    • Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system
    • Catarious D.M., Baydush A.H., Floyd C.E. Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system. Med Phys 2004, 31:1512-1520.
    • (2004) Med Phys , vol.31 , pp. 1512-1520
    • Catarious, D.M.1    Baydush, A.H.2    Floyd, C.E.3
  • 51
    • 84880229711 scopus 로고    scopus 로고
    • An evaluation of image descriptors combined with clinical data for breast cancer diagnosis
    • Moura D., Guevara López M. An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int J Comput Assist Radiol Surg 2013, 8:561-574. 10.1007/s11548-013-0838-2.
    • (2013) Int J Comput Assist Radiol Surg , vol.8 , pp. 561-574
    • Moura, D.1    Guevara López, M.2
  • 52
    • 84879933787 scopus 로고    scopus 로고
    • Breast cancer diagnosis on three different datasets using multi-classifiers
    • Salama G.I., Abdelhalim M., Zeid M.A.-e. Breast cancer diagnosis on three different datasets using multi-classifiers. Breast Cancer (WDBC) 2012, 32:2.
    • (2012) Breast Cancer (WDBC) , vol.32 , pp. 2
    • Salama, G.I.1    Abdelhalim, M.2    Zeid, M.A.-E.3
  • 53
    • 84912124387 scopus 로고    scopus 로고
    • An empirical comparison of data mining classification methods
    • Christobel A. An empirical comparison of data mining classification methods. Int J Comput Inf Syst 2011, 3(2):24-28.
    • (2011) Int J Comput Inf Syst , vol.3 , Issue.2 , pp. 24-28
    • Christobel, A.1
  • 54
    • 26944457692 scopus 로고    scopus 로고
    • Optimized fuzzy classification using genetic algorithm
    • Springer Berlin Heidelberg
    • Kim M., Ryu J. Optimized fuzzy classification using genetic algorithm. Fuzzy systems and knowledge discovery 2005, vol. 3613:392-401. Springer Berlin Heidelberg. 10.1007/11539506_51.
    • (2005) Fuzzy systems and knowledge discovery , vol.3613 , pp. 392-401
    • Kim, M.1    Ryu, J.2
  • 55
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J., Szeifert F. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 2003, 24:2195-2207. 10.1016/S0167-8655(03)00047-3.
    • (2003) Pattern Recognit Lett , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 56
    • 33748873546 scopus 로고    scopus 로고
    • Application of CMAC-based networks on medical image classification
    • Springer Berlin Heidelberg
    • Xu W., Xia S., Xie H. Application of CMAC-based networks on medical image classification. Advances in neural networks - ISNN 2004 2004, vol. 3173:953-958. Springer Berlin Heidelberg. 10.1007/978-3-540-28647-9_157.
    • (2004) Advances in neural networks - ISNN 2004 , vol.3173 , pp. 953-958
    • Xu, W.1    Xia, S.2    Xie, H.3
  • 57
    • 24944432595 scopus 로고    scopus 로고
    • New methodology of computer aided diagnostic system on breast cancer
    • Springer Berlin Heidelberg
    • Song H., Lee S., Kim D., Park G. New methodology of computer aided diagnostic system on breast cancer. Advances in neural networks - ISNN 2005 2005, vol. 3498:780-789. Springer Berlin Heidelberg. 10.1007/11427469_124.
    • (2005) Advances in neural networks - ISNN 2005 , vol.3498 , pp. 780-789
    • Song, H.1    Lee, S.2    Kim, D.3    Park, G.4
  • 60
    • 84989175269 scopus 로고    scopus 로고
    • Introduction to neural networks for signal processing
    • CRC Press, Boca Raton, Florida, USA, Y.H. Hu, J.-N. Hwang (Eds.)
    • Hwang J.-N. Introduction to neural networks for signal processing. Handbook of neural network signal processing 2001, 408. CRC Press, Boca Raton, Florida, USA. Y.H. Hu, J.-N. Hwang (Eds.).
    • (2001) Handbook of neural network signal processing , pp. 408
    • Hwang, J.-N.1
  • 62
    • 84861986826 scopus 로고    scopus 로고
    • Machine learning and radiology
    • Wang S., Summers R.M. Machine learning and radiology. Med Image Anal 2012, 16:933-951. 10.1016/j.media.2012.02.005.
    • (2012) Med Image Anal , vol.16 , pp. 933-951
    • Wang, S.1    Summers, R.M.2
  • 64
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference and prediction
    • Hastie T., Tibshirani R., Friedman J., Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005, 27:83-85.
    • (2005) Math Intell , vol.27 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 65
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 1947, 18:50-60. 10.1214/aoms/1177730491.
    • (1947) Ann Math Stat , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 66
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 2006, 7:1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demsar, J.1
  • 67
    • 84977114401 scopus 로고    scopus 로고
    • Nonparametric statistical inference
    • Springer Berlin Heidelberg, M. Lovric (Ed.)
    • Gibbons J., Chakraborti S. Nonparametric statistical inference. International encyclopedia of statistical science 2011, 977-979. Springer Berlin Heidelberg. 10.1007/978-3-642-04898-2_420. M. Lovric (Ed.).
    • (2011) International encyclopedia of statistical science , pp. 977-979
    • Gibbons, J.1    Chakraborti, S.2
  • 68
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • Morgan Kaufmann, Rutgers University, New Brunswick, NJ, USA, W.W. Cohen, H. Hirsh (Eds.)
    • John G.H., Kohavi R., Pfleger K. Irrelevant features and the subset selection problem. Machine Learning, Proceedings of the Eleventh International Conference 1994, 121-129. Morgan Kaufmann, Rutgers University, New Brunswick, NJ, USA. W.W. Cohen, H. Hirsh (Eds.).
    • (1994) Machine Learning, Proceedings of the Eleventh International Conference , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 71
    • 84878012105 scopus 로고    scopus 로고
    • An improved data mining technique for classification and detection of breast cancer from mammograms
    • Mohanty A., Senapati M., Lenka S. An improved data mining technique for classification and detection of breast cancer from mammograms. Neural Comput Appl 2013, 22:303-310. 10.1007/s00521-012-0834-4.
    • (2013) Neural Comput Appl , vol.22 , pp. 303-310
    • Mohanty, A.1    Senapati, M.2    Lenka, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.