-
2
-
-
34047113813
-
An introduction to feature extraction
-
Springer Berlin/Heidelberg
-
Guyon I., Elisseeff A. An introduction to feature extraction. Feature extraction 2006, vol. 207:1-25. Springer Berlin/Heidelberg. 10.1007/978-3-540-35488-8_1.
-
(2006)
Feature extraction
, vol.207
, pp. 1-25
-
-
Guyon, I.1
Elisseeff, A.2
-
3
-
-
0031688551
-
Near-infrared spectroscopy in the pharmaceutical industry
-
Blanco M., Coello J., Iturriaga H., Maspoch S., de la Pezuela C. Near-infrared spectroscopy in the pharmaceutical industry. Analyst 1998, 123:135R-150R. 10.1039/a802531b.
-
(1998)
Analyst
, vol.123
, pp. 135R-150R
-
-
Blanco, M.1
Coello, J.2
Iturriaga, H.3
Maspoch, S.4
de la Pezuela, C.5
-
4
-
-
14944383798
-
The evolving role of natural products in drug discovery
-
Koehn F.E., Carter G.T. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005, 4:206-220. 10.1038/nrd1657.
-
(2005)
Nat Rev Drug Discov
, vol.4
, pp. 206-220
-
-
Koehn, F.E.1
Carter, G.T.2
-
5
-
-
79960517689
-
Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier
-
Hashemi H., Tax D.M.J., Duin R.P.W., Javaherian A., de Groot P. Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier. Nonlinear Process Geophys 2008, 15:863-871. 10.5194/npg-15-863-2008.
-
(2008)
Nonlinear Process Geophys
, vol.15
, pp. 863-871
-
-
Hashemi, H.1
Tax, D.M.J.2
Duin, R.P.W.3
Javaherian, A.4
de Groot, P.5
-
6
-
-
3943103414
-
Hydrocarbon prediction method based on Svm feature selection
-
Kaifeng Y., Wenkai L., Wenlong D., Shanwen Z., Huanqin X., Yanda L. Hydrocarbon prediction method based on Svm feature selection. Nat Gas Ind 2004, 24:36-38.
-
(2004)
Nat Gas Ind
, vol.24
, pp. 36-38
-
-
Kaifeng, Y.1
Wenkai, L.2
Wenlong, D.3
Shanwen, Z.4
Huanqin, X.5
Yanda, L.6
-
7
-
-
78049398950
-
Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring
-
Chanwoo K., Stern R.M. Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) 2010, 4574-4577. 10.1109/ICASSP.2010.5495570.
-
(2010)
2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)
, pp. 4574-4577
-
-
Chanwoo, K.1
Stern, R.M.2
-
8
-
-
51449098554
-
Discriminative feature selection for hidden Markov models using Segmental Boosting
-
Pei Y., Essa I., Starner T., Rehg J.M. Discriminative feature selection for hidden Markov models using Segmental Boosting. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008) 2008, 2001-2004. 10.1109/ICASSP.2008.4518031.
-
(2008)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008)
, pp. 2001-2004
-
-
Pei, Y.1
Essa, I.2
Starner, T.3
Rehg, J.M.4
-
9
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182.
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
10
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 2004, 5:1205-1224.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
11
-
-
0031838940
-
Bacteria classification based on feature extraction from sensor data
-
Holmberg M., Gustafsson F., Hornsten E.G., Winquist F., Nilsson L.E., Ljung L., et al. Bacteria classification based on feature extraction from sensor data. Biotechnol Tech 1998, 12:319-324. 10.1023/A:1008862617082.
-
(1998)
Biotechnol Tech
, vol.12
, pp. 319-324
-
-
Holmberg, M.1
Gustafsson, F.2
Hornsten, E.G.3
Winquist, F.4
Nilsson, L.E.5
Ljung, L.6
-
12
-
-
0042765643
-
Bacteria classification using Cyranose 320 electronic nose
-
Dutta R., Hines E.L., Gardner J.W., Boilot P. Bacteria classification using Cyranose 320 electronic nose. BioMed Eng Online 2002, 1:4. 10.1186/1475-925x-1-4.
-
(2002)
BioMed Eng Online
, vol.1
, pp. 4
-
-
Dutta, R.1
Hines, E.L.2
Gardner, J.W.3
Boilot, P.4
-
13
-
-
38549181889
-
Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques
-
Springer, Berlin/Heidelberg, 4756/2008
-
López Y., Novoa A., Guevara M., Silva A. Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques. Progress in pattern recognition image analysis and applications 2008, vol. 4756/2008:803-811. Springer, Berlin/Heidelberg. 10.1007/978-3-540-76725-1_83.
-
(2008)
Progress in pattern recognition image analysis and applications
, pp. 803-811
-
-
López, Y.1
Novoa, A.2
Guevara, M.3
Silva, A.4
-
14
-
-
46549086330
-
Medical data mining by fuzzy modeling with selected features
-
Ghazavi S.N., Liao T.W. Medical data mining by fuzzy modeling with selected features. Artif Intell Med 2008, 43:195-206. 10.1016/j.artmed.2008.04.004.
-
(2008)
Artif Intell Med
, vol.43
, pp. 195-206
-
-
Ghazavi, S.N.1
Liao, T.W.2
-
15
-
-
4544361200
-
Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms
-
Soltanian-Zadeh H., Rafiee-Rad F., Pourabdollah-Nejad S.D. Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms. Pattern Recognit 2004, 37:1973-1986. 10.1016/j.patcog.2003.03.001.
-
(2004)
Pattern Recognit
, vol.37
, pp. 1973-1986
-
-
Soltanian-Zadeh, H.1
Rafiee-Rad, F.2
Pourabdollah-Nejad, S.D.3
-
16
-
-
25644432883
-
Computer-aided detection of breast masses on full field digital mammograms
-
Wei J., Sahiner B., Hadjiiski L.M., Chan H.-P., Petrick N., Helvie M.A., et al. Computer-aided detection of breast masses on full field digital mammograms. Med Phys 2005, 32:2827-2838. 10.1118/1.1997327.
-
(2005)
Med Phys
, vol.32
, pp. 2827-2838
-
-
Wei, J.1
Sahiner, B.2
Hadjiiski, L.M.3
Chan, H.-P.4
Petrick, N.5
Helvie, M.A.6
-
17
-
-
0346668291
-
Classification of clustered microcalcifications using a Shape Cognitron neural network
-
Lee S.K., Chung P.C., Chang C.I., Lo C.S., Lee T., Hsu G.C., et al. Classification of clustered microcalcifications using a Shape Cognitron neural network. Neural Netw 2003, 16:121-132. 10.1016/S0893-6080(02)00164-8.
-
(2003)
Neural Netw
, vol.16
, pp. 121-132
-
-
Lee, S.K.1
Chung, P.C.2
Chang, C.I.3
Lo, C.S.4
Lee, T.5
Hsu, G.C.6
-
18
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y., Inza I., Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517. 10.1093/bioinformatics/btm344.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
20
-
-
0038021028
-
A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
-
Liu H., Li J., Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform 2002, 13:51-60.
-
(2002)
Genome Inform
, vol.13
, pp. 51-60
-
-
Liu, H.1
Li, J.2
Wong, L.3
-
21
-
-
0003474751
-
-
Cambridge University Press, Cambridge
-
Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. Numerical recipes in C 1988, Cambridge University Press, Cambridge.
-
(1988)
Numerical recipes in C
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
22
-
-
63249112814
-
39 Dimensionality and sample size considerations in pattern recognition practice
-
Elsevier
-
Jain A.K., Chandrasekaran B. 39 Dimensionality and sample size considerations in pattern recognition practice. Handbook of statistics 1982, vol. 2:835-855. Elsevier. 10.1016/S0169-7161(82)02042-2.
-
(1982)
Handbook of statistics
, vol.2
, pp. 835-855
-
-
Jain, A.K.1
Chandrasekaran, B.2
-
25
-
-
85146422424
-
A practical approach to feature selection
-
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, D. Sleeman, P. Edwards (Eds.)
-
Kira K., Rendell L.A. A practical approach to feature selection. ML92 Proceedings of the ninth international workshop on Machine learning 1992, 249-256. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. D. Sleeman, P. Edwards (Eds.).
-
(1992)
ML92 Proceedings of the ninth international workshop on Machine learning
, pp. 249-256
-
-
Kira, K.1
Rendell, L.A.2
-
26
-
-
3543058847
-
Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents
-
Prados J., Kalousis A., Sanchez J.C., Allard L., Carrette O., Hilario M. Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents. Proteomics 2004, 4:2320-2332. 10.1002/pmic.200400857.
-
(2004)
Proteomics
, vol.4
, pp. 2320-2332
-
-
Prados, J.1
Kalousis, A.2
Sanchez, J.C.3
Allard, L.4
Carrette, O.5
Hilario, M.6
-
28
-
-
84873050658
-
Discovering mammography-based machine learning classifiers for breast cancer diagnosis
-
Ramos-Pollan R., Guevara-Lopez M.A., Suarez-Ortega C., Diaz-Herrero G., Franco-Valiente J.M., Rubio-Del-Solar M., et al. Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J Med Syst 2012, 36:2259-2269. 10.1007/s10916-011-9693-2.
-
(2012)
J Med Syst
, vol.36
, pp. 2259-2269
-
-
Ramos-Pollan, R.1
Guevara-Lopez, M.A.2
Suarez-Ortega, C.3
Diaz-Herrero, G.4
Franco-Valiente, J.M.5
Rubio-Del-Solar, M.6
-
30
-
-
77955514505
-
MammoSys: a content-based image retrieval system using breast density patterns
-
de Oliveira J.E., Machado A.M., Chavez G.C., Lopes A.P., Deserno T.M., Araujo Ade A. MammoSys: a content-based image retrieval system using breast density patterns. Comput Methods Progr Biomed 2010, 99:289-297. 10.1016/j.cmpb.2010.01.005.
-
(2010)
Comput Methods Progr Biomed
, vol.99
, pp. 289-297
-
-
de Oliveira, J.E.1
Machado, A.M.2
Chavez, G.C.3
Lopes, A.P.4
Deserno, T.M.5
Araujo Ade, A.6
-
31
-
-
0002734346
-
The digital database for screening mammography
-
Medical Physics Publishing, M.J. Yaffe (Ed.)
-
Heath M., Bowyer K., Kopans D., Moore R., Kegelmeyer W.P. The digital database for screening mammography. Proceedings of the Fifth International Workshop on Digital Mammography 2001, 212-218. Medical Physics Publishing. M.J. Yaffe (Ed.).
-
(2001)
Proceedings of the Fifth International Workshop on Digital Mammography
, pp. 212-218
-
-
Heath, M.1
Bowyer, K.2
Kopans, D.3
Moore, R.4
Kegelmeyer, W.P.5
-
32
-
-
33750687026
-
Committee American College of Radiology (ACR) ACR BIRADS - mammography
-
American College of Radiology, Reston, VA, A.C.o. Radiology (Ed.)
-
Committee American College of Radiology (ACR) ACR BIRADS - mammography. ACR breast imaging reporting and data system, breast imaging atlas 2003, American College of Radiology, Reston, VA. A.C.o. Radiology (Ed.).
-
(2003)
ACR breast imaging reporting and data system, breast imaging atlas
-
-
-
34
-
-
55349108936
-
Computer aided diagnosis system to detect breast cancer pathological lesions
-
Springer Berlin/Heidelberg
-
López Y., Novoa A., Guevara M., Quintana N., Silva A. Computer aided diagnosis system to detect breast cancer pathological lesions. Progress in pattern recognition, image analysis and applications 2008, vol. 5197:453-460. Springer Berlin/Heidelberg. 10.1007/978-3-540-85920-8_56.
-
(2008)
Progress in pattern recognition, image analysis and applications
, vol.5197
, pp. 453-460
-
-
López, Y.1
Novoa, A.2
Guevara, M.3
Quintana, N.4
Silva, A.5
-
35
-
-
0013326060
-
Feature selection for classification
-
Dash M., Liu H. Feature selection for classification. Intell Data Anal 1997, 1:131-156. 10.3233/IDA-1997-1302.
-
(1997)
Intell Data Anal
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
36
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte R.C. Very simple classification rules perform well on most commonly used datasets. Mach Learn 1993, 11:63-91. 10.1023/A:1022631118932.
-
(1993)
Mach Learn
, vol.11
, pp. 63-91
-
-
Holte, R.C.1
-
37
-
-
84865540205
-
A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine
-
Malar E., Kandaswamy A., Chakravarthy D., Giri Dharan A. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Comput Biol Med 2012, 42:898-905. 10.1016/j.compbiomed.2012.07.001.
-
(2012)
Comput Biol Med
, vol.42
, pp. 898-905
-
-
Malar, E.1
Kandaswamy, A.2
Chakravarthy, D.3
Giri Dharan, A.4
-
38
-
-
84923937328
-
Neural networks for the classification of benign and malignant patters in digital mammograms
-
IGI Global, Hershey, NY, USA, V. Sugumaran (Ed.)
-
Verma B., Panchal R. Neural networks for the classification of benign and malignant patters in digital mammograms. Intelligent information technologies: concepts, methodologies, tools, and applications 2008, 947-967. IGI Global, Hershey, NY, USA. 10.4018/978-1-59904-941-0.ch056. V. Sugumaran (Ed.).
-
(2008)
Intelligent information technologies: concepts, methodologies, tools, and applications
, pp. 947-967
-
-
Verma, B.1
Panchal, R.2
-
39
-
-
33746659809
-
A completely automated CAD system for mass detection in a large mammographic database
-
Bellotti R., De Carlo F., Tangaro S., Gargano G., Maggipinto G., Castellano M., et al. A completely automated CAD system for mass detection in a large mammographic database. Med Phys 2006, 33:3066-3075.
-
(2006)
Med Phys
, vol.33
, pp. 3066-3075
-
-
Bellotti, R.1
De Carlo, F.2
Tangaro, S.3
Gargano, G.4
Maggipinto, G.5
Castellano, M.6
-
40
-
-
19344363582
-
Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines
-
Papadopoulos A., Fotiadis D.I., Likas A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artif Intell Med 2005, 34:141-150. 10.1016/j.artmed.2004.10.001.
-
(2005)
Artif Intell Med
, vol.34
, pp. 141-150
-
-
Papadopoulos, A.1
Fotiadis, D.I.2
Likas, A.3
-
41
-
-
84912103556
-
Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection
-
M. Ganzha, L. Maciaszek, M. Paprzycki (Eds.)
-
Pérez N., Guevara M.A., Silva A., Ramos I., Loureiro J. Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection. IEEE 2014 Federated Conference on Computer Science and Information Systems (FedCSIS) 2014, 209-217. 10.15439/2014F249. M. Ganzha, L. Maciaszek, M. Paprzycki (Eds.).
-
(2014)
IEEE 2014 Federated Conference on Computer Science and Information Systems (FedCSIS)
, pp. 209-217
-
-
Pérez, N.1
Guevara, M.A.2
Silva, A.3
Ramos, I.4
Loureiro, J.5
-
42
-
-
84878404694
-
Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis
-
International Society for Optics and Photonics, Lake Buena Vista (Orlando Area), Florida, USA, C.L. Novak, S. Aylward (Eds.)
-
Pérez N., Guevara M.A., Silva A. Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis. SPIE medical imaging 2013 2013, 867022-1-867022-14. International Society for Optics and Photonics, Lake Buena Vista (Orlando Area), Florida, USA. 10.1117/12.2007912. C.L. Novak, S. Aylward (Eds.).
-
(2013)
SPIE medical imaging 2013
, pp. 8670221-86702214
-
-
Pérez, N.1
Guevara, M.A.2
Silva, A.3
-
43
-
-
10844273163
-
A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography
-
Ping Z., Verma B., Kuldeep K. A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography. IEEE International Joint Conference on Neural Networks, vol. 3 2004, 2303-2308. 10.1109/IJCNN.2004.1380985.
-
(2004)
IEEE International Joint Conference on Neural Networks, vol. 3
, pp. 2303-2308
-
-
Ping, Z.1
Verma, B.2
Kuldeep, K.3
-
44
-
-
33744535368
-
Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
-
Mavroforakis M.E., Georgiou H.V., Dimitropoulos N., Cavouras D., Theodoridis S. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med 2006, 37:145-162. 10.1016/j.artmed.2006.03.002.
-
(2006)
Artif Intell Med
, vol.37
, pp. 145-162
-
-
Mavroforakis, M.E.1
Georgiou, H.V.2
Dimitropoulos, N.3
Cavouras, D.4
Theodoridis, S.5
-
45
-
-
84912120167
-
Evaluation of features selection methods for breast cancer classification
-
Porto, Portugal, J. Silva, M. Vaz (Eds.)
-
Pérez N., Guevara M.A., Silva A. Evaluation of features selection methods for breast cancer classification. 15th International Conference on Experimental Mechanics (ICEM15) 2012, Porto, Portugal. J. Silva, M. Vaz (Eds.).
-
(2012)
15th International Conference on Experimental Mechanics (ICEM15)
-
-
Pérez, N.1
Guevara, M.A.2
Silva, A.3
-
46
-
-
24344463437
-
Image segmentation feature selection and pattern classification for mammographic microcalcifications
-
Fu J.C., Lee S.K., Wong S.T., Yeh J.Y., Wang A.H., Wu H.K. Image segmentation feature selection and pattern classification for mammographic microcalcifications. Comput Med Imaging Graphics 2005, 29:419-429. 10.1016/j.compmedimag.2005.03.002.
-
(2005)
Comput Med Imaging Graphics
, vol.29
, pp. 419-429
-
-
Fu, J.C.1
Lee, S.K.2
Wong, S.T.3
Yeh, J.Y.4
Wang, A.H.5
Wu, H.K.6
-
47
-
-
37549049420
-
Characterization of mammographic masses based on level set segmentation with new image features and patient information
-
Shi J., Sahiner B., Chan H.P., Ge J., Hadjiiski L., Helvie M.A., et al. Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 2008, 35:280-290. 10.1118/1.2820630.
-
(2008)
Med Phys
, vol.35
, pp. 280-290
-
-
Shi, J.1
Sahiner, B.2
Chan, H.P.3
Ge, J.4
Hadjiiski, L.5
Helvie, M.A.6
-
48
-
-
34447514175
-
Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors
-
Jesneck J.L., Lo J.Y., Baker J.A. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology 2007, 244:390-398. 10.1148/radiol.2442060712.
-
(2007)
Radiology
, vol.244
, pp. 390-398
-
-
Jesneck, J.L.1
Lo, J.Y.2
Baker, J.A.3
-
49
-
-
33744832647
-
Breast cancer CADx based on BI-RAds descriptors from two mammographic views
-
Gupta S., Chyn P.F., Markey M.K. Breast cancer CADx based on BI-RAds descriptors from two mammographic views. Med Phys 2006, 33:1810-1817.
-
(2006)
Med Phys
, vol.33
, pp. 1810-1817
-
-
Gupta, S.1
Chyn, P.F.2
Markey, M.K.3
-
50
-
-
3042640716
-
Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system
-
Catarious D.M., Baydush A.H., Floyd C.E. Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system. Med Phys 2004, 31:1512-1520.
-
(2004)
Med Phys
, vol.31
, pp. 1512-1520
-
-
Catarious, D.M.1
Baydush, A.H.2
Floyd, C.E.3
-
51
-
-
84880229711
-
An evaluation of image descriptors combined with clinical data for breast cancer diagnosis
-
Moura D., Guevara López M. An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int J Comput Assist Radiol Surg 2013, 8:561-574. 10.1007/s11548-013-0838-2.
-
(2013)
Int J Comput Assist Radiol Surg
, vol.8
, pp. 561-574
-
-
Moura, D.1
Guevara López, M.2
-
52
-
-
84879933787
-
Breast cancer diagnosis on three different datasets using multi-classifiers
-
Salama G.I., Abdelhalim M., Zeid M.A.-e. Breast cancer diagnosis on three different datasets using multi-classifiers. Breast Cancer (WDBC) 2012, 32:2.
-
(2012)
Breast Cancer (WDBC)
, vol.32
, pp. 2
-
-
Salama, G.I.1
Abdelhalim, M.2
Zeid, M.A.-E.3
-
53
-
-
84912124387
-
An empirical comparison of data mining classification methods
-
Christobel A. An empirical comparison of data mining classification methods. Int J Comput Inf Syst 2011, 3(2):24-28.
-
(2011)
Int J Comput Inf Syst
, vol.3
, Issue.2
, pp. 24-28
-
-
Christobel, A.1
-
54
-
-
26944457692
-
Optimized fuzzy classification using genetic algorithm
-
Springer Berlin Heidelberg
-
Kim M., Ryu J. Optimized fuzzy classification using genetic algorithm. Fuzzy systems and knowledge discovery 2005, vol. 3613:392-401. Springer Berlin Heidelberg. 10.1007/11539506_51.
-
(2005)
Fuzzy systems and knowledge discovery
, vol.3613
, pp. 392-401
-
-
Kim, M.1
Ryu, J.2
-
55
-
-
0041339769
-
Supervised fuzzy clustering for the identification of fuzzy classifiers
-
Abonyi J., Szeifert F. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 2003, 24:2195-2207. 10.1016/S0167-8655(03)00047-3.
-
(2003)
Pattern Recognit Lett
, vol.24
, pp. 2195-2207
-
-
Abonyi, J.1
Szeifert, F.2
-
56
-
-
33748873546
-
Application of CMAC-based networks on medical image classification
-
Springer Berlin Heidelberg
-
Xu W., Xia S., Xie H. Application of CMAC-based networks on medical image classification. Advances in neural networks - ISNN 2004 2004, vol. 3173:953-958. Springer Berlin Heidelberg. 10.1007/978-3-540-28647-9_157.
-
(2004)
Advances in neural networks - ISNN 2004
, vol.3173
, pp. 953-958
-
-
Xu, W.1
Xia, S.2
Xie, H.3
-
57
-
-
24944432595
-
New methodology of computer aided diagnostic system on breast cancer
-
Springer Berlin Heidelberg
-
Song H., Lee S., Kim D., Park G. New methodology of computer aided diagnostic system on breast cancer. Advances in neural networks - ISNN 2005 2005, vol. 3498:780-789. Springer Berlin Heidelberg. 10.1007/11427469_124.
-
(2005)
Advances in neural networks - ISNN 2005
, vol.3498
, pp. 780-789
-
-
Song, H.1
Lee, S.2
Kim, D.3
Park, G.4
-
58
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H. The WEKA data mining software: an update. ACM SIGKDD Explor Newslett 2009, 11:10-18. 10.1145/1656274.1656278.
-
(2009)
ACM SIGKDD Explor Newslett
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
59
-
-
25444500257
-
Solving feature subset selection problem by a Parallel Scatter Search
-
García López F., García Torres M., Melián Batista B., Moreno Pérez J.A., Moreno-Vega J.M. Solving feature subset selection problem by a Parallel Scatter Search. Eur J Oper Res 2006, 169:477-489. 10.1016/j.ejor.2004.08.010.
-
(2006)
Eur J Oper Res
, vol.169
, pp. 477-489
-
-
García López, F.1
García Torres, M.2
Melián Batista, B.3
Moreno Pérez, J.A.4
Moreno-Vega, J.M.5
-
60
-
-
84989175269
-
Introduction to neural networks for signal processing
-
CRC Press, Boca Raton, Florida, USA, Y.H. Hu, J.-N. Hwang (Eds.)
-
Hwang J.-N. Introduction to neural networks for signal processing. Handbook of neural network signal processing 2001, 408. CRC Press, Boca Raton, Florida, USA. Y.H. Hu, J.-N. Hwang (Eds.).
-
(2001)
Handbook of neural network signal processing
, pp. 408
-
-
Hwang, J.-N.1
-
61
-
-
0003922190
-
-
Wiley-Interscience, New York, NY, USA
-
Duda R.O., Hart P.E., Stork D.G. Pattern classification 2000, Wiley-Interscience, New York, NY, USA. 2nd ed.
-
(2000)
Pattern classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
62
-
-
84861986826
-
Machine learning and radiology
-
Wang S., Summers R.M. Machine learning and radiology. Med Image Anal 2012, 16:933-951. 10.1016/j.media.2012.02.005.
-
(2012)
Med Image Anal
, vol.16
, pp. 933-951
-
-
Wang, S.1
Summers, R.M.2
-
64
-
-
85161148381
-
The elements of statistical learning: data mining, inference and prediction
-
Hastie T., Tibshirani R., Friedman J., Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005, 27:83-85.
-
(2005)
Math Intell
, vol.27
, pp. 83-85
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Franklin, J.4
-
65
-
-
0002322469
-
On a test of whether one of two random variables is stochastically larger than the other
-
Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 1947, 18:50-60. 10.1214/aoms/1177730491.
-
(1947)
Ann Math Stat
, vol.18
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
-
66
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 2006, 7:1-30.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
67
-
-
84977114401
-
Nonparametric statistical inference
-
Springer Berlin Heidelberg, M. Lovric (Ed.)
-
Gibbons J., Chakraborti S. Nonparametric statistical inference. International encyclopedia of statistical science 2011, 977-979. Springer Berlin Heidelberg. 10.1007/978-3-642-04898-2_420. M. Lovric (Ed.).
-
(2011)
International encyclopedia of statistical science
, pp. 977-979
-
-
Gibbons, J.1
Chakraborti, S.2
-
68
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
Morgan Kaufmann, Rutgers University, New Brunswick, NJ, USA, W.W. Cohen, H. Hirsh (Eds.)
-
John G.H., Kohavi R., Pfleger K. Irrelevant features and the subset selection problem. Machine Learning, Proceedings of the Eleventh International Conference 1994, 121-129. Morgan Kaufmann, Rutgers University, New Brunswick, NJ, USA. W.W. Cohen, H. Hirsh (Eds.).
-
(1994)
Machine Learning, Proceedings of the Eleventh International Conference
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
69
-
-
85102332811
-
-
John Wiley & Sons, Hoboken, New Jersey, USA
-
Hollander M., Wolfe D. Nonparametric statistical methods 2013, John Wiley & Sons, Hoboken, New Jersey, USA. 3rd ed.
-
(2013)
Nonparametric statistical methods
-
-
Hollander, M.1
Wolfe, D.2
-
71
-
-
84878012105
-
An improved data mining technique for classification and detection of breast cancer from mammograms
-
Mohanty A., Senapati M., Lenka S. An improved data mining technique for classification and detection of breast cancer from mammograms. Neural Comput Appl 2013, 22:303-310. 10.1007/s00521-012-0834-4.
-
(2013)
Neural Comput Appl
, vol.22
, pp. 303-310
-
-
Mohanty, A.1
Senapati, M.2
Lenka, S.3
|