메뉴 건너뛰기




Volumn 28, Issue 5, 2015, Pages 613-625

An Efficient Approach for Automated Mass Segmentation and Classification in Mammograms

Author keywords

Automated mass segmentation; Classification; Computer aided detection; Mammography; Random forest

Indexed keywords

AUTOMATION; COMPUTER AIDED DIAGNOSIS; DATA MINING; DATABASE SYSTEMS; DECISION TREES; DISEASES; GENETIC ALGORITHMS; IMAGE RETRIEVAL; IMAGE SEGMENTATION; MAMMOGRAPHY; PARTICLE SWARM OPTIMIZATION (PSO); SUPPORT VECTOR MACHINES; VECTORS; X RAY SCREENS;

EID: 84941998220     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-015-9778-4     Document Type: Article
Times cited : (97)

References (39)
  • 1
    • 79952232216 scopus 로고    scopus 로고
    • Global cancer statistics
    • Jemal A, et al: Global cancer statistics. CA: Cancer J Clin 61(2):69–90, 2011
    • (2011) CA: Cancer J Clin , vol.61 , Issue.2 , pp. 69-90
    • Jemal, A.1
  • 3
    • 77049125483 scopus 로고    scopus 로고
    • A comparison of two methods for the segmentation of masses in the digital mammograms
    • COI: 1:STN:280:DC%2BC3c7mvVSqsQ%3D%3D, PID: 19828291
    • Dubey R, Hanmandlu M, Gupta S: A comparison of two methods for the segmentation of masses in the digital mammograms. Comput Med Imaging Graph 34(3):185–191, 2010
    • (2010) Comput Med Imaging Graph , vol.34 , Issue.3 , pp. 185-191
    • Dubey, R.1    Hanmandlu, M.2    Gupta, S.3
  • 4
    • 75749149659 scopus 로고    scopus 로고
    • A review of automatic mass detection and segmentation in mammographic images
    • PID: 20071209
    • Oliver A, et al: A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14(2):87–110, 2010
    • (2010) Med Image Anal , vol.14 , Issue.2 , pp. 87-110
    • Oliver, A.1
  • 5
    • 68949164775 scopus 로고    scopus 로고
    • Automated breast cancer detection and classification using ultrasound images: A survey
    • Cheng H, et al: Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recogn 43(1):299–317, 2010
    • (2010) Pattern Recogn , vol.43 , Issue.1 , pp. 299-317
    • Cheng, H.1
  • 6
    • 84869084676 scopus 로고    scopus 로고
    • Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images
    • PID: 22939834
    • Wu W-J, Lin S-W, Moon WK: Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images. Comput Med Imaging Graph 36(8):627–633, 2012
    • (2012) Comput Med Imaging Graph , vol.36 , Issue.8 , pp. 627-633
    • Wu, W.-J.1    Lin, S.-W.2    Moon, W.K.3
  • 7
    • 85072846539 scopus 로고    scopus 로고
    • Automatic Mass Segmentation Method in mammograms based on improved VFC Snake model
    • International Conference on Image Processing, Computer Vision, and Pattern Recognition
    • Lu X, Ma Y, Xie W, et al: Automatic Mass Segmentation Method in mammograms based on improved VFC Snake model. in The 2014 International Conference on Image Processing, Computer Vision, and Pattern Recognition. 2014
    • (2014) in The , vol.2014
    • Lu, X.1    Ma, Y.2    Xie, W.3
  • 8
    • 84988806707 scopus 로고    scopus 로고
    • A level set method for biomedical Image segmentation
    • International Conference on Image Processing, Computer Vision, and Pattern Recognition
    • Ma Y, Xie W, Wang Z, et al: A level set method for biomedical Image segmentation. in The 2013 International Conference on Image Processing, Computer Vision, and Pattern Recognition. 2013
    • (2013) in The , vol.2013
    • Ma, Y.1    Xie, W.2    Wang, Z.3
  • 9
    • 80052877089 scopus 로고    scopus 로고
    • Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis
    • PID: 21554985
    • Mazurowski MA, et al: Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis. J Biomed Inform 44(5):815–823, 2011
    • (2011) J Biomed Inform , vol.44 , Issue.5 , pp. 815-823
    • Mazurowski, M.A.1
  • 10
    • 84879043579 scopus 로고    scopus 로고
    • Classification of masses in mammographic image using wavelet domain features and polynomial classifier
    • Nascimento MZD, et al: Classification of masses in mammographic image using wavelet domain features and polynomial classifier. Expert Syst Appl 40(15):6213–6221, 2013
    • (2013) Expert Syst Appl , vol.40 , Issue.15 , pp. 6213-6221
    • Nascimento, M.Z.D.1
  • 11
    • 34547591212 scopus 로고    scopus 로고
    • Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier
    • PID: 17383623
    • Delogu P, et al: Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Comput Biol Med 37(10):1479–1491, 2007
    • (2007) Comput Biol Med , vol.37 , Issue.10 , pp. 1479-1491
    • Delogu, P.1
  • 12
    • 77950864589 scopus 로고    scopus 로고
    • Contourlet-based mammography mass classification using the SVM family
    • PID: 20181330
    • Moayedi F, et al: Contourlet-based mammography mass classification using the SVM family. Comput Biol Med 40(4):373–383, 2010
    • (2010) Comput Biol Med , vol.40 , Issue.4 , pp. 373-383
    • Moayedi, F.1
  • 13
    • 85018134924 scopus 로고    scopus 로고
    • An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images
    • Wu W.-J., S.-W. Lin, and W.K. Moon: An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images. J Digit Imaging: p. 1–10, 2014
    • (2014) J Digit Imaging , pp. 1-10
    • Wu, W.-J.1    Lin, S.-W.2    Moon, W.K.3
  • 14
    • 32044457119 scopus 로고    scopus 로고
    • Approaches for automated detection and classification of masses in mammograms
    • Cheng H, et al: Approaches for automated detection and classification of masses in mammograms. Pattern Recogn 39(4):646–668, 2006
    • (2006) Pattern Recogn , vol.39 , Issue.4 , pp. 646-668
    • Cheng, H.1
  • 15
    • 85018133137 scopus 로고    scopus 로고
    • Breast cancer diagnosis development research based on morphological characteristics parameters of breast tumor cells
    • Dong M, Ma Y: Breast cancer diagnosis development research based on morphological characteristics parameters of breast tumor cells. Chin J Clin 7(11):5023–5026, 2013
    • (2013) Chin J Clin , vol.7 , Issue.11 , pp. 5023-5026
    • Dong, M.1    Ma, Y.2
  • 16
    • 84879080110 scopus 로고    scopus 로고
    • Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using Complex Daubechies wavelets
    • Issac Niwas S, et al: Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using Complex Daubechies wavelets. Signal Process 93(10):2828–2837, 2013
    • (2013) Signal Process , vol.93 , Issue.10 , pp. 2828-2837
    • Issac Niwas, S.1
  • 17
    • 84873986050 scopus 로고    scopus 로고
    • A genetic algorithm model based on artificial neural network for prediction of axillary lymph node status in breast cancer
    • Karakıs R, Tez M, Kılıc YA, et al: A genetic algorithm model based on artificial neural network for prediction of axillary lymph node status in breast cancer. Eng Appl Artif Intell 26(3):945–950, 2013
    • (2013) Eng Appl Artif Intell , vol.26 , Issue.3 , pp. 945-950
    • Karakıs, R.1    Tez, M.2    Kılıc, Y.A.3
  • 18
    • 85018135318 scopus 로고    scopus 로고
    • Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry
    • Lacson R, et al: Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry. J Digit Imaging: p. 1–9, 2014
    • (2014) J Digit Imaging , pp. 1-9
    • Lacson, R.1
  • 20
    • 84941998883 scopus 로고    scopus 로고
    • Suckling J, et al: The mammographic image analysis society digital mammogram database. 1994
    • Suckling J, et al: The mammographic image analysis society digital mammogram database. 1994
  • 21
    • 0242485044 scopus 로고    scopus 로고
    • Expressiveness of the Breast Imaging Reporting and Database System (BI-RADS). in Proceedings of the AMIA Annual Fall Symposium
    • Starren J, Johnson S.M: Expressiveness of the Breast Imaging Reporting and Database System (BI-RADS). in Proceedings of the AMIA Annual Fall Symposium.: American Medical Informatics Association, 1997
    • (1997) American Medical Informatics Association
    • Starren, J.1    Johnson, S.M.2
  • 22
    • 0031145399 scopus 로고    scopus 로고
    • Rough set approach to knowledge-based decision support
    • Pawlak Z: Rough set approach to knowledge-based decision support. Eur J Oper Res 99(1):48–57, 1997
    • (1997) Eur J Oper Res , vol.99 , Issue.1 , pp. 48-57
    • Pawlak, Z.1
  • 24
    • 34547777302 scopus 로고    scopus 로고
    • Active contour external force using vector field convolution for image segmentation
    • PID: 17688214
    • Li B, Acton ST: Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process 16(8):2096–2106, 2007
    • (2007) IEEE Trans Image Process , vol.16 , Issue.8 , pp. 2096-2106
    • Li, B.1    Acton, S.T.2
  • 26
    • 0035116181 scopus 로고    scopus 로고
    • False-positive reduction in CAD mass detection using a competitive classification strategy
    • Li, L., et al., False-positive reduction in CAD mass detection using a competitive classification strategy. Medical Physics 28(2):250–258, 2001
    • (2001) Medical Physics , vol.28 , Issue.2 , pp. 250-258
    • Li, L.1
  • 27
    • 0029848678 scopus 로고    scopus 로고
    • Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification
    • Petrick N, et al: Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Med Phys 23(10):1685–1696, 1996
    • (1996) Med Phys , vol.23 , Issue.10 , pp. 1685-1696
    • Petrick, N.1
  • 29
    • 0032788506 scopus 로고    scopus 로고
    • Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms
    • Petrick N, et al: Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms. Med Phys 26(8):1642–1654, 1999
    • (1999) Med Phys , vol.26 , Issue.8 , pp. 1642-1654
    • Petrick, N.1
  • 30
    • 31044436417 scopus 로고    scopus 로고
    • A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment
    • Zheng B, et al: A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment. Med Phys 33(1):111–117, 2006
    • (2006) Med Phys , vol.33 , Issue.1 , pp. 111-117
    • Zheng, B.1
  • 32
    • 77953962014 scopus 로고    scopus 로고
    • Histogram similarity measure using variable bin size distance
    • Ma Y, Gu X, Wang Y: Histogram similarity measure using variable bin size distance. Comput Vis Image Underst 114(8):981–989, 2010
    • (2010) Comput Vis Image Underst , vol.114 , Issue.8 , pp. 981-989
    • Ma, Y.1    Gu, X.2    Wang, Y.3
  • 33
    • 51749123574 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with support vector machines and particle swarm optimization
    • Melgani F, Bazi Y: Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Technol Biomed 12(5):667–677, 2008
    • (2008) IEEE Trans Inf Technol Biomed , vol.12 , Issue.5 , pp. 667-677
    • Melgani, F.1    Bazi, Y.2
  • 35
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl MA, Brodley CE: Decision tree classification of land cover from remotely sensed data. Remote Sens Environ 61(3):399–409, 1997
    • (1997) Remote Sens Environ , vol.61 , Issue.3 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 36
    • 84941996674 scopus 로고
    • The nature of statistical learning theory: Springer
    • Valdimir V. and N. Vapnik: The nature of statistical learning theory. 1995, Springer
    • (1995) Vapnik
    • Valdimir, V.1
  • 38
    • 33751019565 scopus 로고    scopus 로고
    • An introduction to support vector machines and other kernel-based learning methods
    • Zhang T: An introduction to support vector machines and other kernel-based learning methods. AI Mag 22(2):103, 2001
    • (2001) AI Mag , vol.22 , Issue.2 , pp. 103
    • Zhang, T.1
  • 39
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto UM, Dougherty ER: Is cross-validation valid for small-sample microarray classification? Bioinformatics 20(3):374–380, 2004
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.