-
1
-
-
84922381210
-
Heart disease and stroke statistics—2015 update: a report from the American Heart Association
-
PID: 25520374
-
Mozaffarian D et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.
-
(2015)
Circulation
, vol.131
, Issue.4
, pp. 29-322
-
-
Mozaffarian, D.1
-
2
-
-
77955487488
-
The science of stroke: mechanisms in search of treatments
-
COI: 1:CAS:528:DC%2BC3cXpsVCgtLc%3D, PID: 20670828
-
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.
-
(2010)
Neuron
, vol.67
, Issue.2
, pp. 181-198
-
-
Moskowitz, M.A.1
Lo, E.H.2
Iadecola, C.3
-
3
-
-
0033199996
-
Pathobiology of ischaemic stroke: an integrated view
-
COI: 1:CAS:528:DyaK1MXlsVygtrk%3D, PID: 10441299
-
Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.
-
(1999)
Trends Neurosci
, vol.22
, Issue.9
, pp. 391-397
-
-
Dirnagl, U.1
Iadecola, C.2
Moskowitz, M.A.3
-
4
-
-
67049118104
-
Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options
-
PID: 19434798
-
Kleinig TJ, Vink R. Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol. 2009;22(3):294–301.
-
(2009)
Curr Opin Neurol
, vol.22
, Issue.3
, pp. 294-301
-
-
Kleinig, T.J.1
Vink, R.2
-
5
-
-
34347394105
-
CREB and cAMP response element-mediated gene expression in the ischemic brain
-
COI: 1:CAS:528:DC%2BD2sXns1OksLY%3D, PID: 17565598
-
Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J. 2007;274(13):3210–7.
-
(2007)
FEBS J
, vol.274
, Issue.13
, pp. 3210-3217
-
-
Kitagawa, K.1
-
6
-
-
84899824036
-
Mechanisms of neurovascular dysfunction in acute ischemic brain
-
COI: 1:CAS:528:DC%2BC2cXnt1egu7Y%3D, PID: 24372202
-
Terasaki Y et al. Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem. 2014;21(18):2035–42.
-
(2014)
Curr Med Chem
, vol.21
, Issue.18
, pp. 2035-2042
-
-
Terasaki, Y.1
-
7
-
-
79960665602
-
Intracranial hemorrhage: mechanisms of secondary brain injury
-
PID: 21725733
-
Lok J et al. Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir Suppl. 2011;111:63–9.
-
(2011)
Acta Neurochir Suppl
, vol.111
, pp. 63-69
-
-
Lok, J.1
-
8
-
-
79958255054
-
Molecular pathophysiology of cerebral hemorrhage: secondary brain injury
-
PID: 21527759
-
Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42(6):1781–6.
-
(2011)
Stroke
, vol.42
, Issue.6
, pp. 1781-1786
-
-
Aronowski, J.1
Zhao, X.2
-
9
-
-
18244392468
-
Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results
-
COI: 1:CAS:528:DC%2BD38XhtFSgsr0%3D, PID: 11779900
-
Lyden P et al. Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results. Stroke. 2002;33(1):122–8.
-
(2002)
Stroke
, vol.33
, Issue.1
, pp. 122-128
-
-
Lyden, P.1
-
10
-
-
34547795720
-
NXY-059 for the treatment of acute ischemic stroke
-
COI: 1:CAS:528:DC%2BD2sXptVSjsLc%3D, PID: 17687131
-
Shuaib A et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.
-
(2007)
N Engl J Med
, vol.357
, Issue.6
, pp. 562-571
-
-
Shuaib, A.1
-
11
-
-
84984763363
-
Mechanisms, challenges and opportunities in stroke
-
COI: 1:CAS:528:DC%2BD3sXjtlalsbg%3D, PID: 12728267
-
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.
-
(2003)
Nat Rev Neurosci
, vol.4
, Issue.5
, pp. 399-415
-
-
Lo, E.H.1
Dalkara, T.2
Moskowitz, M.A.3
-
12
-
-
0036330007
-
Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions
-
PID: 12154275
-
Gladstone DJ et al. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36.
-
(2002)
Stroke
, vol.33
, Issue.8
, pp. 2123-2136
-
-
Gladstone, D.J.1
-
13
-
-
84886714373
-
Microglial responses after ischemic stroke and intracerebral hemorrhage
-
PID: 24223607
-
Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol. 2013;2013:746068.
-
(2013)
Clin Dev Immunol
, vol.2013
, pp. 746068
-
-
Taylor, R.A.1
Sansing, L.H.2
-
14
-
-
38749096624
-
Multiphasic roles for matrix metalloproteinases after stroke
-
COI: 1:CAS:528:DC%2BD1cXhsVOgu7s%3D, PID: 18226583
-
Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8(1):82–9.
-
(2008)
Curr Opin Pharmacol
, vol.8
, Issue.1
, pp. 82-89
-
-
Rosell, A.1
Lo, E.H.2
-
15
-
-
78149275209
-
Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke
-
COI: 1:CAS:528:DC%2BC3cXhsVymtb3I, PID: 20955426
-
Hayakawa K, Qiu J, Lo EH. Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann N Y Acad Sci. 2010;1207:50–7.
-
(2010)
Ann N Y Acad Sci
, vol.1207
, pp. 50-57
-
-
Hayakawa, K.1
Qiu, J.2
Lo, E.H.3
-
16
-
-
49049101658
-
Ins and outs of ADF/cofilin activity and regulation
-
PID: 18499298
-
Van Troys M et al. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87(8–9):649–67.
-
(2008)
Eur J Cell Biol
, vol.87
, Issue.8-9
, pp. 649-667
-
-
Van Troys, M.1
-
17
-
-
34548850904
-
N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex
-
COI: 1:CAS:528:DC%2BD2sXhtV2qtrnK, PID: 17875668
-
Bellenchi GC et al. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev. 2007;21(18):2347–57.
-
(2007)
Genes Dev
, vol.21
, Issue.18
, pp. 2347-2357
-
-
Bellenchi, G.C.1
-
18
-
-
33749046492
-
Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin
-
COI: 1:CAS:528:DC%2BD28XhtFegtbrJ, PID: 17018289
-
Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 2006;24(1):13–23.
-
(2006)
Mol Cell
, vol.24
, Issue.1
, pp. 13-23
-
-
Andrianantoandro, E.1
Pollard, T.D.2
-
19
-
-
64049091643
-
Cofilin dissociates Arp2/3 complex and branches from actin filaments
-
COI: 1:CAS:528:DC%2BD1MXksVCmt7w%3D, PID: 19362000
-
Chan C, Beltzner CC, Pollard TD. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr Biol. 2009;19(7):537–45.
-
(2009)
Curr Biol
, vol.19
, Issue.7
, pp. 537-545
-
-
Chan, C.1
Beltzner, C.C.2
Pollard, T.D.3
-
20
-
-
0037169335
-
Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin
-
COI: 1:CAS:528:DC%2BD38XhtV2hsbo%3D, PID: 11832213
-
Niwa R et al. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002;108(2):233–46.
-
(2002)
Cell
, vol.108
, Issue.2
, pp. 233-246
-
-
Niwa, R.1
-
21
-
-
0034536444
-
The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes
-
COI: 1:CAS:528:DC%2BD3MXpt1Kr, PID: 11093160
-
Ambach A et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol. 2000;30(12):3422–31.
-
(2000)
Eur J Immunol
, vol.30
, Issue.12
, pp. 3422-3431
-
-
Ambach, A.1
-
22
-
-
12344250639
-
Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics
-
COI: 1:CAS:528:DC%2BD2MXlvFSm, PID: 15580268
-
Gohla A, Birkenfeld J, Bokoch GM. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol. 2005;7(1):21–9.
-
(2005)
Nat Cell Biol
, vol.7
, Issue.1
, pp. 21-29
-
-
Gohla, A.1
Birkenfeld, J.2
Bokoch, G.M.3
-
23
-
-
66349108700
-
Reactive oxygen species regulate a slingshot-cofilin activation pathway
-
COI: 1:CAS:528:DC%2BD1MXotVyqurg%3D, PID: 19339277
-
Kim JS, Huang TY, Bokoch GM. Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol Biol Cell. 2009;20(11):2650–60.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.11
, pp. 2650-2660
-
-
Kim, J.S.1
Huang, T.Y.2
Bokoch, G.M.3
-
24
-
-
16844372470
-
Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin
-
COI: 1:CAS:528:DC%2BD2MXislygsr4%3D, PID: 15671020
-
Wang Y, Shibasaki F, Mizuno K. Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem. 2005;280(13):12683–9.
-
(2005)
J Biol Chem
, vol.280
, Issue.13
, pp. 12683-12689
-
-
Wang, Y.1
Shibasaki, F.2
Mizuno, K.3
-
25
-
-
55549091059
-
Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation
-
COI: 1:CAS:528:DC%2BD1cXhsVSms7vF, PID: 19000834
-
Huang TY et al. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell. 2008;15(5):691–703.
-
(2008)
Dev Cell
, vol.15
, Issue.5
, pp. 691-703
-
-
Huang, T.Y.1
-
26
-
-
84876546028
-
Combined actions of Na/K-ATPase, NCX1 and glutamate dependent NMDA receptors in ischemic rat brain penumbra
-
PID: 21212860
-
Park S, Jung Y. Combined actions of Na/K-ATPase, NCX1 and glutamate dependent NMDA receptors in ischemic rat brain penumbra. Anat Cell Biol. 2010;43(3):201–10.
-
(2010)
Anat Cell Biol
, vol.43
, Issue.3
, pp. 201-210
-
-
Park, S.1
Jung, Y.2
-
27
-
-
77952531728
-
ADF/cofilin-actin rods in neurodegenerative diseases
-
COI: 1:CAS:528:DC%2BC3cXmtFeks7k%3D, PID: 20088812
-
Bamburg JR et al. ADF/cofilin-actin rods in neurodegenerative diseases. Curr Alzheimer Res. 2010;7(3):241–50.
-
(2010)
Curr Alzheimer Res
, vol.7
, Issue.3
, pp. 241-250
-
-
Bamburg, J.R.1
-
28
-
-
0033280237
-
Proteins of the ADF/cofilin family: essential regulators of actin dynamics
-
COI: 1:CAS:528:DC%2BD3cXhtVSnurw%3D, PID: 10611961
-
Bamburg JR. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230.
-
(1999)
Annu Rev Cell Dev Biol
, vol.15
, pp. 185-230
-
-
Bamburg, J.R.1
-
29
-
-
30844443048
-
Cofilin phosphatases and regulation of actin dynamics
-
COI: 1:CAS:528:DC%2BD28XmsVGqsw%3D%3D, PID: 16337782
-
Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 2006;18(1):26–31.
-
(2006)
Curr Opin Cell Biol
, vol.18
, Issue.1
, pp. 26-31
-
-
Huang, T.Y.1
DerMardirossian, C.2
Bokoch, G.M.3
-
30
-
-
0037452660
-
Polarised migration: cofilin holds the front
-
COI: 1:CAS:528:DC%2BD3sXhsValtrk%3D, PID: 12593812
-
Bailly M, Jones GE. Polarised migration: cofilin holds the front. Curr Biol. 2003;13(4):R128–30.
-
(2003)
Curr Biol
, vol.13
, Issue.4
, pp. 128-130
-
-
Bailly, M.1
Jones, G.E.2
-
31
-
-
33746773588
-
Modulation of calcium signalling by the actin-binding protein cofilin
-
COI: 1:CAS:528:DC%2BD28Xot1WqtLw%3D, PID: 16875665
-
Nusco GA et al. Modulation of calcium signalling by the actin-binding protein cofilin. Biochem Biophys Res Commun. 2006;348(1):109–14.
-
(2006)
Biochem Biophys Res Commun
, vol.348
, Issue.1
, pp. 109-114
-
-
Nusco, G.A.1
-
32
-
-
84929838453
-
Roles of cofilin in development and its mechanisms of regulation
-
COI: 1:CAS:528:DC%2BC2MXpt1yhs7c%3D, PID: 25864508
-
Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ. 2015;57(4):275–90.
-
(2015)
Dev Growth Differ
, vol.57
, Issue.4
, pp. 275-290
-
-
Ohashi, K.1
-
33
-
-
84903750485
-
Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration
-
COI: 1:CAS:528:DC%2BC2cXpt1Wgsb0%3D, PID: 24813767
-
Schonhofen P et al. Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration. Mini Rev Med Chem. 2014;14(5):393–400.
-
(2014)
Mini Rev Med Chem
, vol.14
, Issue.5
, pp. 393-400
-
-
Schonhofen, P.1
-
34
-
-
84878654913
-
Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases
-
COI: 1:CAS:528:DC%2BC3sXpsVaqsL4%3D, PID: 23469847
-
Maki T et al. Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol Disord Drug Targets. 2013;12(3):302–15.
-
(2013)
CNS Neurol Disord Drug Targets
, vol.12
, Issue.3
, pp. 302-315
-
-
Maki, T.1
-
35
-
-
33646337394
-
Cellular and molecular mechanisms of neural repair after stroke: making waves
-
COI: 1:CAS:528:DC%2BD28XkvFKhsLg%3D, PID: 16634041
-
Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42.
-
(2006)
Ann Neurol
, vol.59
, Issue.5
, pp. 735-742
-
-
Carmichael, S.T.1
-
36
-
-
84858601983
-
Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation
-
PID: 22441198
-
Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11(4):369–80.
-
(2012)
Lancet Neurol
, vol.11
, Issue.4
, pp. 369-380
-
-
Hermann, D.M.1
Chopp, M.2
-
37
-
-
64549119716
-
Inflammation, plasticity and real-time imaging after cerebral ischemia
-
COI: 1:CAS:528:DC%2BD1MXjvFOnsr4%3D, PID: 19225790
-
Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol. 2009;117(5):497–509.
-
(2009)
Acta Neuropathol
, vol.117
, Issue.5
, pp. 497-509
-
-
Kriz, J.1
Lalancette-Hebert, M.2
-
38
-
-
70450267518
-
Plasticity during stroke recovery: from synapse to behaviour
-
COI: 1:CAS:528:DC%2BD1MXhtlGhsb%2FE, PID: 19888284
-
Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.
-
(2009)
Nat Rev Neurosci
, vol.10
, Issue.12
, pp. 861-872
-
-
Murphy, T.H.1
Corbett, D.2
-
39
-
-
84937640368
-
ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis
-
PID: 24770705
-
Wolf M et al. ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex. 2015;25(9):2863–75.
-
(2015)
Cereb Cortex
, vol.25
, Issue.9
, pp. 2863-2875
-
-
Wolf, M.1
-
40
-
-
77957275697
-
ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity
-
COI: 1:CAS:528:DC%2BC3cXhtFCnsb3E, PID: 20835250
-
Gu J et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci. 2010;13(10):1208–15.
-
(2010)
Nat Neurosci
, vol.13
, Issue.10
, pp. 1208-1215
-
-
Gu, J.1
-
41
-
-
77954484950
-
Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons
-
COI: 1:CAS:528:DC%2BC3cXpt1eqsLo%3D, PID: 20442266
-
Yuen EY et al. Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol. 2010;588(Pt 13):2361–71.
-
(2010)
J Physiol
, vol.588
, pp. 2361-2371
-
-
Yuen, E.Y.1
-
42
-
-
77953105487
-
Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics
-
COI: 1:CAS:528:DC%2BC3cXkvVSht78%3D, PID: 20407421
-
Rust MB et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J. 2010;29(11):1889–902.
-
(2010)
EMBO J
, vol.29
, Issue.11
, pp. 1889-1902
-
-
Rust, M.B.1
-
43
-
-
0036735672
-
Neuronal replacement from endogenous precursors in the adult brain after stroke
-
COI: 1:CAS:528:DC%2BD38Xms1aitrs%3D, PID: 12161747
-
Arvidsson A et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.
-
(2002)
Nat Med
, vol.8
, Issue.9
, pp. 963-970
-
-
Arvidsson, A.1
-
44
-
-
67649844027
-
Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse
-
COI: 1:CAS:528:DC%2BD1MXhs1amt7rK, PID: 19436318
-
Zhang RL et al. Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse. J Cereb Blood Flow Metab. 2009;29(7):1240–50.
-
(2009)
J Cereb Blood Flow Metab
, vol.29
, Issue.7
, pp. 1240-1250
-
-
Zhang, R.L.1
-
45
-
-
84938064383
-
Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system
-
COI: 1:CAS:528:DC%2BC2MXhtFCqtbbE, PID: 26166299
-
Nawaz S et al. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell. 2015;34(2):139–51.
-
(2015)
Dev Cell
, vol.34
, Issue.2
, pp. 139-151
-
-
Nawaz, S.1
-
46
-
-
84904255886
-
-
Pedraza, C.E., et al., Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro, 2014. 6(4)
-
Pedraza, C.E., et al., Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro, 2014. 6(4).
-
-
-
-
47
-
-
79960141471
-
The immunology of stroke: from mechanisms to translation
-
COI: 1:CAS:528:DC%2BC3MXos1Srsrw%3D, PID: 21738161
-
Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.
-
(2011)
Nat Med
, vol.17
, Issue.7
, pp. 796-808
-
-
Iadecola, C.1
Anrather, J.2
-
48
-
-
77955661661
-
Protective effects of microglia in multiple sclerosis
-
PID: 19409897
-
Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp Neurol. 2010;225(1):24–8.
-
(2010)
Exp Neurol
, vol.225
, Issue.1
, pp. 24-28
-
-
Napoli, I.1
Neumann, H.2
-
49
-
-
84898841614
-
Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin
-
PID: 24795566
-
Gitik M et al. Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci. 2014;8:104.
-
(2014)
Front Cell Neurosci
, vol.8
, pp. 104
-
-
Gitik, M.1
-
50
-
-
0023887866
-
Oxygen free radical involvement in ischemia and reperfusion injury to brain
-
COI: 1:CAS:528:DyaL1cXkt1WitLw%3D, PID: 3380359
-
Cao W et al. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett. 1988;88(2):233–8.
-
(1988)
Neurosci Lett
, vol.88
, Issue.2
, pp. 233-238
-
-
Cao, W.1
-
51
-
-
80051669923
-
Translational research involving oxidative stress and diseases of aging
-
COI: 1:CAS:528:DC%2BC3MXhtVagtbnM, PID: 21549833
-
Floyd RA et al. Translational research involving oxidative stress and diseases of aging. Free Radic Biol Med. 2011;51(5):931–41.
-
(2011)
Free Radic Biol Med
, vol.51
, Issue.5
, pp. 931-941
-
-
Floyd, R.A.1
-
52
-
-
80855130801
-
Mitochondrial calcium handling during ischemia-induced cell death in neurons
-
COI: 1:CAS:528:DC%2BC3MXhsVOjsrvJ, PID: 21846486
-
Gouriou Y et al. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie. 2011;93(12):2060–7.
-
(2011)
Biochimie
, vol.93
, Issue.12
, pp. 2060-2067
-
-
Gouriou, Y.1
-
53
-
-
9344268817
-
Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation
-
COI: 1:CAS:528:DC%2BD2cXhtVKlsrfN, PID: 15564577
-
Zhang Y et al. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 2004;24(47):10616–27.
-
(2004)
J Neurosci
, vol.24
, Issue.47
, pp. 10616-10627
-
-
Zhang, Y.1
-
54
-
-
70349651926
-
Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin
-
COI: 1:CAS:528:DC%2BD1MXht1SqsLnE, PID: 19734890
-
Klamt F et al. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nat Cell Biol. 2009;11(10):1241–6.
-
(2009)
Nat Cell Biol
, vol.11
, Issue.10
, pp. 1241-1246
-
-
Klamt, F.1
-
55
-
-
79958725413
-
Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells
-
COI: 1:STN:280:DC%2BC3M3jtVOjsg%3D%3D, PID: 21364663
-
Wabnitz GH et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis. 2010;1:e58.
-
(2010)
Cell Death Dis
, vol.1
, pp. 58
-
-
Wabnitz, G.H.1
-
56
-
-
84958109420
-
-
Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia, Mol Neurobiol
-
Madineni, A., Q. Alhadidi, and Z.A. Shah, Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia. Mol Neurobiol, 2015. doi:10.1007/s12035-014-9056-3.
-
(2015)
and Z.A. Shah
-
-
Madineni, A.1
Alhadidi, Q.2
-
57
-
-
43249116466
-
A new penumbra: transitioning from injury into repair after stroke
-
COI: 1:CAS:528:DC%2BD1cXlsFCmsr0%3D, PID: 18463660
-
Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.
-
(2008)
Nat Med
, vol.14
, Issue.5
, pp. 497-500
-
-
Lo, E.H.1
-
58
-
-
79960693301
-
Vascular endothelial growth factor regulates the migration of oligodendrocyte precursor cells
-
COI: 1:CAS:528:DC%2BC3MXps1SmtL0%3D, PID: 21775609
-
Hayakawa K et al. Vascular endothelial growth factor regulates the migration of oligodendrocyte precursor cells. J Neurosci. 2011;31(29):10666–70.
-
(2011)
J Neurosci
, vol.31
, Issue.29
, pp. 10666-10670
-
-
Hayakawa, K.1
-
59
-
-
84857868421
-
Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate
-
COI: 1:STN:280:DC%2BC387ps1ehtQ%3D%3D, PID: 22297298
-
Cavaliere F et al. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death Dis. 2012;3:e268.
-
(2012)
Cell Death Dis
, vol.3
, pp. 268
-
-
Cavaliere, F.1
-
60
-
-
79960392882
-
Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction
-
COI: 1:CAS:528:DC%2BC3MXovFKlsLk%3D, PID: 20712407
-
Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal. 2011;15(4):933–48.
-
(2011)
Antioxid Redox Signal
, vol.15
, Issue.4
, pp. 933-948
-
-
Fleissner, F.1
Thum, T.2
-
61
-
-
33746689151
-
Novel isoforms of NADPH-oxidase in cerebral vascular control
-
COI: 1:CAS:528:DC%2BD28Xns1SksLs%3D, PID: 16616784
-
Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111(3):928–48.
-
(2006)
Pharmacol Ther
, vol.111
, Issue.3
, pp. 928-948
-
-
Miller, A.A.1
Drummond, G.R.2
Sobey, C.G.3
-
62
-
-
46749118458
-
Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease
-
COI: 1:CAS:528:DC%2BD1cXptVGqtbw%3D, PID: 18535182
-
Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol. 2008;173(1):2–13.
-
(2008)
Am J Pathol
, vol.173
, Issue.1
, pp. 2-13
-
-
Pacher, P.1
Szabo, C.2
-
63
-
-
63449105018
-
Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation
-
COI: 1:CAS:528:DC%2BD1MXivVekt7o%3D, PID: 19150879
-
Lee MY et al. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol. 2009;29(4):480–7.
-
(2009)
Arterioscler Thromb Vasc Biol
, vol.29
, Issue.4
, pp. 480-487
-
-
Lee, M.Y.1
-
64
-
-
0032054439
-
Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress
-
COI: 1:STN:280:DyaK1c7ns1OntA%3D%3D, PID: 9517569
-
Juurlink BH, Thorburne SK, Hertz L. Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia. 1998;22(4):371–8.
-
(1998)
Glia
, vol.22
, Issue.4
, pp. 371-378
-
-
Juurlink, B.H.1
Thorburne, S.K.2
Hertz, L.3
-
65
-
-
2542456489
-
Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes
-
PID: 15095374
-
Mronga T et al. Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes. Glia. 2004;46(4):446–55.
-
(2004)
Glia
, vol.46
, Issue.4
, pp. 446-455
-
-
Mronga, T.1
-
66
-
-
0033987488
-
Cellular distribution of superoxide dismutases in the rat CNS
-
COI: 1:STN:280:DC%2BD3c%2Fmt1OktQ%3D%3D, PID: 10594920
-
Lindenau J et al. Cellular distribution of superoxide dismutases in the rat CNS. Glia. 2000;29(1):25–34.
-
(2000)
Glia
, vol.29
, Issue.1
, pp. 25-34
-
-
Lindenau, J.1
-
67
-
-
0033899176
-
Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species
-
COI: 1:CAS:528:DC%2BD3cXmtVeisb0%3D, PID: 10931173
-
Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267(16):4912–6.
-
(2000)
Eur J Biochem
, vol.267
, Issue.16
, pp. 4912-4916
-
-
Dringen, R.1
Gutterer, J.M.2
Hirrlinger, J.3
-
68
-
-
0034977186
-
Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism
-
COI: 1:CAS:528:DC%2BD3MXkslWnu70%3D, PID: 11413243
-
Chen Y et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem. 2001;77(6):1601–10.
-
(2001)
J Neurochem
, vol.77
, Issue.6
, pp. 1601-1610
-
-
Chen, Y.1
-
69
-
-
78650035858
-
Molecular and cellular mechanisms of excitotoxic neuronal death
-
COI: 1:CAS:528:DC%2BC3cXhsVWqtr%2FJ, PID: 20213199
-
Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010;15(11):1382–402.
-
(2010)
Apoptosis
, vol.15
, Issue.11
, pp. 1382-1402
-
-
Wang, Y.1
Qin, Z.H.2
-
70
-
-
0035575852
-
Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo
-
COI: 1:CAS:528:DC%2BD3MXoslyht7o%3D, PID: 11717354
-
Mabuchi T et al. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci. 2001;21(23):9204–13.
-
(2001)
J Neurosci
, vol.21
, Issue.23
, pp. 9204-9213
-
-
Mabuchi, T.1
-
71
-
-
0023109409
-
Glutamate neurotoxicity in cortical cell culture
-
COI: 1:CAS:528:DyaL2sXhtFCisbw%3D, PID: 2880937
-
Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci. 1987;7(2):357–68.
-
(1987)
J Neurosci
, vol.7
, Issue.2
, pp. 357-368
-
-
Choi, D.W.1
Maulucci-Gedde, M.2
Kriegstein, A.R.3
-
72
-
-
84863981333
-
The role of glutamate in neuronal ischemic injury: the role of spark in fire
-
PID: 22044990
-
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci. 2012;33(2):223–37.
-
(2012)
Neurol Sci
, vol.33
, Issue.2
, pp. 223-237
-
-
Kostandy, B.B.1
-
73
-
-
0035876476
-
Glutamate release and neuronal damage in ischemia
-
COI: 1:CAS:528:DC%2BD3MXks1Cqt74%3D, PID: 11459428
-
Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69(4):369–81.
-
(2001)
Life Sci
, vol.69
, Issue.4
, pp. 369-381
-
-
Nishizawa, Y.1
-
74
-
-
0034688312
-
Glutamate release in severe brain ischaemia is mainly by reversed uptake
-
COI: 1:STN:280:DC%2BD3c7itlantQ%3D%3D, PID: 10659851
-
Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403(6767):316–21.
-
(2000)
Nature
, vol.403
, Issue.6767
, pp. 316-321
-
-
Rossi, D.J.1
Oshima, T.2
Attwell, D.3
-
75
-
-
84855932980
-
Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death
-
COI: 1:CAS:528:DC%2BC38XitVKktrk%3D, PID: 22117609
-
Posadas I et al. Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death. J Neurochem. 2012;120(4):515–27.
-
(2012)
J Neurochem
, vol.120
, Issue.4
, pp. 515-527
-
-
Posadas, I.1
-
76
-
-
84868578353
-
Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons
-
COI: 1:CAS:528:DC%2BC38XhsFWjs7bM, PID: 22981401
-
Chen B et al. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons. Brain Res. 2012;1486:1–13.
-
(2012)
Brain Res
, vol.1486
, pp. 1-13
-
-
Chen, B.1
-
77
-
-
80052228154
-
Cerebral blood flow alteration in neuroprotection following cerebral ischaemia
-
COI: 1:CAS:528:DC%2BC3MXht1Wjt7%2FM, PID: 21708904
-
Sutherland BA et al. Cerebral blood flow alteration in neuroprotection following cerebral ischaemia. J Physiol. 2011;589(Pt 17):4105–14.
-
(2011)
J Physiol
, vol.589
, pp. 4105-4114
-
-
Sutherland, B.A.1
-
78
-
-
84884955739
-
Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism
-
COI: 1:CAS:528:DC%2BC3sXhsF2lurrJ, PID: 24089484
-
Duffney LJ et al. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci. 2013;33(40):15767–78.
-
(2013)
J Neurosci
, vol.33
, Issue.40
, pp. 15767-15778
-
-
Duffney, L.J.1
-
79
-
-
0033779559
-
Astrocyte glutamate transport: review of properties, regulation, and physiological functions
-
COI: 1:STN:280:DC%2BD3M%2FivVGmtA%3D%3D, PID: 10975906
-
Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32(1):1–14.
-
(2000)
Glia
, vol.32
, Issue.1
, pp. 1-14
-
-
Anderson, C.M.1
Swanson, R.A.2
-
80
-
-
0017579832
-
Glutamine synthetase: glial localization in brain
-
COI: 1:CAS:528:DyaE2sXhsFejsbg%3D, PID: 14400
-
Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brain. Science. 1977;195(4284):1356–8.
-
(1977)
Science
, vol.195
, Issue.4284
, pp. 1356-1358
-
-
Martinez-Hernandez, A.1
Bell, K.P.2
Norenberg, M.D.3
-
81
-
-
0036139090
-
Glutamine uptake by neurons: interaction of protons with system a transporters
-
COI: 1:CAS:528:DC%2BD38XislWjtA%3D%3D, PID: 11756489
-
Chaudhry FA et al. Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci. 2002;22(1):62–72.
-
(2002)
J Neurosci
, vol.22
, Issue.1
, pp. 62-72
-
-
Chaudhry, F.A.1
-
82
-
-
0034305620
-
Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain
-
COI: 1:CAS:528:DC%2BD3cXns1eiur4%3D, PID: 11059811
-
Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res. 2000;25(9–10):1407–19.
-
(2000)
Neurochem Res
, vol.25
, Issue.9-10
, pp. 1407-1419
-
-
Kvamme, E.1
Roberg, B.2
Torgner, I.A.3
-
83
-
-
35848947733
-
The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain
-
COI: 1:CAS:528:DC%2BD1cXjtFClsb8%3D, PID: 17847118
-
McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res. 2007;85(15):3347–58.
-
(2007)
J Neurosci Res
, vol.85
, Issue.15
, pp. 3347-3358
-
-
McKenna, M.C.1
-
84
-
-
0035001341
-
Glutamate uptake
-
COI: 1:CAS:528:DC%2BD3MXjsFWns74%3D, PID: 11369436
-
Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.
-
(2001)
Prog Neurobiol
, vol.65
, Issue.1
, pp. 1-105
-
-
Danbolt, N.C.1
-
85
-
-
35348990864
-
Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway
-
PID: 17886291
-
Adolph O et al. Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway. Glia. 2007;55(16):1699–707.
-
(2007)
Glia
, vol.55
, Issue.16
, pp. 1699-1707
-
-
Adolph, O.1
-
86
-
-
84886681672
-
Links between L-glutamate transporters, Na+/K + −ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin
-
COI: 1:CAS:528:DC%2BC3sXhslKmtr7F, PID: 24095695
-
Sheean RK et al. Links between L-glutamate transporters, Na+/K + −ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin. Neuroscience. 2013;254:335–46.
-
(2013)
Neuroscience
, vol.254
, pp. 335-346
-
-
Sheean, R.K.1
-
87
-
-
84900834421
-
Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C
-
PID: 24677092
-
Yan X et al. Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia. 2014;62(7):1093–109.
-
(2014)
Glia
, vol.62
, Issue.7
, pp. 1093-1109
-
-
Yan, X.1
-
88
-
-
84861429431
-
Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
-
PID: 22622581
-
Funfschilling U et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–21.
-
(2012)
Nature
, vol.485
, Issue.7399
, pp. 517-521
-
-
Funfschilling, U.1
-
89
-
-
0038452761
-
Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor
-
COI: 1:CAS:528:DC%2BD3sXltlentrw%3D, PID: 12832519
-
Wilkins A et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003;23(12):4967–74.
-
(2003)
J Neurosci
, vol.23
, Issue.12
, pp. 4967-4974
-
-
Wilkins, A.1
-
91
-
-
29244440745
-
NMDA receptors are expressed in oligodendrocytes and activated in ischaemia
-
COI: 1:CAS:528:DC%2BD2MXhtlakur3J, PID: 16372011
-
Karadottir R et al. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438(7071):1162–6.
-
(2005)
Nature
, vol.438
, Issue.7071
, pp. 1162-1166
-
-
Karadottir, R.1
-
92
-
-
0028988526
-
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage
-
COI: 1:CAS:528:DyaK2MXlsl2ls7s%3D, PID: 7539052
-
Yoshioka A et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem. 1995;64(6):2442–8.
-
(1995)
J Neurochem
, vol.64
, Issue.6
, pp. 2442-2448
-
-
Yoshioka, A.1
-
93
-
-
84892462488
-
Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia
-
PID: 24195677
-
Simonishvili S et al. Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro. 2013;5(5):e00131.
-
(2013)
ASN Neuro
, vol.5
, Issue.5
, pp. 00131
-
-
Simonishvili, S.1
-
94
-
-
41149157840
-
Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3
-
COI: 1:CAS:528:DC%2BD1cXktVClu7k%3D, PID: 18358609
-
Mathur BN, Deutch AY. Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3. Neurosci Lett. 2008;435(2):90–4.
-
(2008)
Neurosci Lett
, vol.435
, Issue.2
, pp. 90-94
-
-
Mathur, B.N.1
Deutch, A.Y.2
-
95
-
-
0345303766
-
Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor
-
COI: 1:CAS:528:DC%2BD2cXhsVal, PID: 12893641
-
Sharp CD et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol. 2003;285(6):H2592–8.
-
(2003)
Am J Physiol Heart Circ Physiol
, vol.285
, Issue.6
, pp. 2592-2598
-
-
Sharp, C.D.1
-
96
-
-
84878623114
-
CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis
-
COI: 1:CAS:528:DC%2BC3sXhtV2jur%2FE, PID: 23576575
-
Basuroy S, Leffler CW, Parfenova H. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Physiol Cell Physiol. 2013;304(11):C1105–15.
-
(2013)
Am J Physiol Cell Physiol
, vol.304
, Issue.11
, pp. 1105-1115
-
-
Basuroy, S.1
Leffler, C.W.2
Parfenova, H.3
-
97
-
-
33845768784
-
Microglia-mediated neurotoxicity: uncovering the molecular mechanisms
-
COI: 1:CAS:528:DC%2BD28XhtlemtL7M, PID: 17180163
-
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.
-
(2007)
Nat Rev Neurosci
, vol.8
, Issue.1
, pp. 57-69
-
-
Block, M.L.1
Zecca, L.2
Hong, J.S.3
-
98
-
-
20344398223
-
Astrocyte activation and reactive gliosis
-
PID: 15846805
-
Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.
-
(2005)
Glia
, vol.50
, Issue.4
, pp. 427-434
-
-
Pekny, M.1
Nilsson, M.2
-
99
-
-
62949143181
-
Astrocytes and ischemic injury
-
PID: 19064795
-
Takano T et al. Astrocytes and ischemic injury. Stroke. 2009;40(3 Suppl):S8–12.
-
(2009)
Stroke
, vol.40
, pp. 8-12
-
-
Takano, T.1
-
100
-
-
81455140676
-
Astrocyte proliferation following stroke in the mouse depends on distance from the infarct
-
COI: 1:CAS:528:DC%2BC3MXhs1Wju7zK, PID: 22132159
-
Barreto GE et al. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One. 2011;6(11):e27881.
-
(2011)
PLoS One
, vol.6
, Issue.11
, pp. 27881
-
-
Barreto, G.E.1
-
101
-
-
33846611967
-
Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines
-
COI: 1:CAS:528:DC%2BD2sXhtVKltL0%3D, PID: 17261732
-
Wagner KR. Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke. 2007;38(2 Suppl):753–8.
-
(2007)
Stroke
, vol.38
, pp. 753-758
-
-
Wagner, K.R.1
-
102
-
-
77956545744
-
Preclinical and clinical research on inflammation after intracerebral hemorrhage
-
COI: 1:CAS:528:DC%2BC3cXhsVGntrvO, PID: 20713126
-
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.
-
(2010)
Prog Neurobiol
, vol.92
, Issue.4
, pp. 463-477
-
-
Wang, J.1
-
103
-
-
84879554454
-
The changing phenotype of microglia from homeostasis to disease
-
COI: 1:CAS:528:DC%2BC38XhsVeltr3M, PID: 23210447
-
Luo XG, Chen SD. The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener. 2012;1(1):9.
-
(2012)
Transl Neurodegener
, vol.1
, Issue.1
, pp. 9
-
-
Luo, X.G.1
Chen, S.D.2
-
104
-
-
41149118513
-
How dying cells alert the immune system to danger
-
COI: 1:CAS:528:DC%2BD1cXjs1antLs%3D, PID: 18340345
-
Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8(4):279–89.
-
(2008)
Nat Rev Immunol
, vol.8
, Issue.4
, pp. 279-289
-
-
Kono, H.1
Rock, K.L.2
-
105
-
-
84891805286
-
Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation
-
COI: 1:CAS:528:DC%2BC2cXhtF2gur8%3D, PID: 24291544
-
Zhou Y et al. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.
-
(2014)
Prog Neurobiol
, vol.115
, pp. 25-44
-
-
Zhou, Y.1
-
106
-
-
84904101390
-
Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke
-
PID: 25089266
-
Lee Y et al. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. Biomed Res Int. 2014;2014:297241.
-
(2014)
Biomed Res Int
, vol.2014
, pp. 297241
-
-
Lee, Y.1
-
107
-
-
84885638937
-
Role of inflammation and its mediators in acute ischemic stroke
-
PID: 24006091
-
Jin R et al. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013;6(5):834–51.
-
(2013)
J Cardiovasc Transl Res
, vol.6
, Issue.5
, pp. 834-851
-
-
Jin, R.1
-
108
-
-
84871078032
-
Immunological responses and actin dynamics in macrophages are controlled by N-cofilin but are independent from ADF
-
PID: 22558315
-
Jonsson F et al. Immunological responses and actin dynamics in macrophages are controlled by N-cofilin but are independent from ADF. PLoS One. 2012;7(4):e36034.
-
(2012)
PLoS One
, vol.7
, Issue.4
, pp. 36034
-
-
Jonsson, F.1
-
109
-
-
33847338043
-
Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization
-
COI: 1:CAS:528:DC%2BD2sXit12ku7g%3D, PID: 17293856
-
Li J et al. Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol. 2007;9(3):276–86.
-
(2007)
Nat Cell Biol
, vol.9
, Issue.3
, pp. 276-286
-
-
Li, J.1
-
110
-
-
77956490621
-
Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia
-
PID: 20825680
-
Rasmussen I et al. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol. 2010;11:44.
-
(2010)
BMC Immunol
, vol.11
, pp. 44
-
-
Rasmussen, I.1
-
111
-
-
84863511515
-
Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin
-
COI: 1:CAS:528:DC%2BC38Xhsl2jt7%2FP, PID: 22776089
-
Hadas S et al. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflammation. 2012;9:166.
-
(2012)
J Neuroinflammation
, vol.9
, pp. 166
-
-
Hadas, S.1
-
112
-
-
84902537095
-
Phagocytosis of microglia in the central nervous system diseases
-
COI: 1:CAS:528:DC%2BC2cXjtlShuw%3D%3D, PID: 24395130
-
Fu R et al. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49(3):1422–34.
-
(2014)
Mol Neurobiol
, vol.49
, Issue.3
, pp. 1422-1434
-
-
Fu, R.1
-
113
-
-
84899730580
-
Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons
-
PID: 24760020
-
Walsh KP et al. Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One. 2014;9(4):e95995.
-
(2014)
PLoS One
, vol.9
, Issue.4
, pp. 95995
-
-
Walsh, K.P.1
-
114
-
-
84895190755
-
Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia
-
COI: 1:CAS:528:DC%2BC2cXjt1Sht74%3D, PID: 24641185
-
Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol. 2014;171(5):1210–30.
-
(2014)
Br J Pharmacol
, vol.171
, Issue.5
, pp. 1210-1230
-
-
Engelhardt, S.1
Patkar, S.2
Ogunshola, O.O.3
-
115
-
-
44449099036
-
Tight junctions and the modulation of barrier function in disease
-
PID: 18415116
-
Forster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130(1):55–70.
-
(2008)
Histochem Cell Biol
, vol.130
, Issue.1
, pp. 55-70
-
-
Forster, C.1
-
116
-
-
84955374786
-
-
Structure and function of the blood-brain barrier. 2010. 37(1): p. 13–25
-
Structure and function of the blood-brain barrier. 2010. 37(1): p. 13–25.
-
-
-
-
117
-
-
80055019036
-
Blood-brain barrier breakdown in acute and chronic cerebrovascular disease
-
COI: 1:CAS:528:DC%2BC3MXhtlKrsbrM, PID: 21940972
-
Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8.
-
(2011)
Stroke
, vol.42
, Issue.11
, pp. 3323-3328
-
-
Yang, Y.1
Rosenberg, G.A.2
-
118
-
-
84905858029
-
Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage
-
PID: 25120903
-
Keep RF et al. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS. 2014;11:18.
-
(2014)
Fluids Barriers CNS
, vol.11
, pp. 18
-
-
Keep, R.F.1
-
119
-
-
34247842900
-
Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells
-
COI: 1:CAS:528:DC%2BD2sXkvFymtr0%3D, PID: 17392177
-
Koto T et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–97.
-
(2007)
Am J Pathol
, vol.170
, Issue.4
, pp. 1389-1397
-
-
Koto, T.1
-
120
-
-
77950516409
-
Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement
-
COI: 1:CAS:528:DC%2BC3cXktVGjs7c%3D, PID: 19997118
-
Bauer AT et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30(4):837–48.
-
(2010)
J Cereb Blood Flow Metab
, vol.30
, Issue.4
, pp. 837-848
-
-
Bauer, A.T.1
-
121
-
-
78049452265
-
Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation
-
COI: 1:CAS:528:DC%2BC3cXhtlKjtbfO, PID: 20700133
-
Willis CL, Meske DS, Davis TP. Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab. 2010;30(11):1847–59.
-
(2010)
J Cereb Blood Flow Metab
, vol.30
, Issue.11
, pp. 1847-1859
-
-
Willis, C.L.1
Meske, D.S.2
Davis, T.P.3
-
122
-
-
70349445278
-
Thrombin induces rapid disassembly of claudin-5 from the tight junction of endothelial cells
-
COI: 1:CAS:528:DC%2BD1MXht1aisL3E, PID: 19665016
-
Kondo N et al. Thrombin induces rapid disassembly of claudin-5 from the tight junction of endothelial cells. Exp Cell Res. 2009;315(17):2879–87.
-
(2009)
Exp Cell Res
, vol.315
, Issue.17
, pp. 2879-2887
-
-
Kondo, N.1
-
123
-
-
33646488804
-
Activation of microglial cells by thrombin: past, present, and future
-
COI: 1:CAS:528:DC%2BD28XltFagtLc%3D, PID: 16673268
-
Moller T, Weinstein JR, Hanisch UK. Activation of microglial cells by thrombin: past, present, and future. Semin Thromb Hemost. 2006;32 Suppl 1:69–76.
-
(2006)
Semin Thromb Hemost
, vol.32
, pp. 69-76
-
-
Moller, T.1
Weinstein, J.R.2
Hanisch, U.K.3
-
124
-
-
34247488271
-
Inflammation after intracerebral hemorrhage
-
COI: 1:CAS:528:DC%2BD2sXlvVSktr0%3D, PID: 17033693
-
Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.
-
(2007)
J Cereb Blood Flow Metab
, vol.27
, Issue.5
, pp. 894-908
-
-
Wang, J.1
Dore, S.2
-
125
-
-
59849129267
-
The actin cytoskeleton in endothelial cell phenotypes
-
COI: 1:CAS:528:DC%2BD1MXhvFGltbs%3D, PID: 19028505
-
Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res. 2009;77(1):53–63.
-
(2009)
Microvasc Res
, vol.77
, Issue.1
, pp. 53-63
-
-
Prasain, N.1
Stevens, T.2
-
126
-
-
84929310642
-
Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study
-
COI: 1:CAS:528:DC%2BC2MXjtlKmsr4%3D, PID: 25879623
-
Engelhardt S et al. Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS. 2015;12:4.
-
(2015)
Fluids Barriers CNS
, vol.12
, pp. 4
-
-
Engelhardt, S.1
-
127
-
-
41149121644
-
Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton
-
COI: 1:CAS:528:DC%2BD1cXksVGqtrc%3D, PID: 18183615
-
Liu LB et al. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res. 2008;86(5):1153–68.
-
(2008)
J Neurosci Res
, vol.86
, Issue.5
, pp. 1153-1168
-
-
Liu, L.B.1
-
128
-
-
33744813515
-
Cofilin mediates ATP depletion-induced endothelial cell actin alterations
-
COI: 1:CAS:528:DC%2BD28XlvVersbw%3D, PID: 16434575
-
Suurna MV et al. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol. 2006;290(6):F1398–407.
-
(2006)
Am J Physiol Renal Physiol
, vol.290
, Issue.6
, pp. 1398-1407
-
-
Suurna, M.V.1
-
129
-
-
0035171699
-
Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation
-
COI: 1:CAS:528:DC%2BD3MXjtVaqtr0%3D, PID: 11294912
-
Toshima J et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol Biol Cell. 2001;12(4):1131–45.
-
(2001)
Mol Biol Cell
, vol.12
, Issue.4
, pp. 1131-1145
-
-
Toshima, J.1
-
130
-
-
33644508365
-
MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration
-
COI: 1:CAS:528:DC%2BD28Xhs1ersLg%3D, PID: 16456544
-
Kobayashi M et al. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 2006;25(4):713–26.
-
(2006)
EMBO J
, vol.25
, Issue.4
, pp. 713-726
-
-
Kobayashi, M.1
-
131
-
-
56249085965
-
Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins
-
COI: 1:CAS:528:DC%2BD1cXhsVais7vO, PID: 18952063
-
Nagumo Y et al. Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem Biophys Res Commun. 2008;377(3):921–5.
-
(2008)
Biochem Biophys Res Commun
, vol.377
, Issue.3
, pp. 921-925
-
-
Nagumo, Y.1
-
132
-
-
84894125389
-
The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin
-
PID: 24260326
-
Shiobara T et al. The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin. PLoS One. 2013;8(11):e79954.
-
(2013)
PLoS One
, vol.8
, Issue.11
, pp. 79954
-
-
Shiobara, T.1
-
133
-
-
84886992780
-
Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-kappaB activation and endothelial cell inflammation
-
COI: 1:CAS:528:DC%2BC3sXhvFansLjM, PID: 24039253
-
Leonard A et al. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-kappaB activation and endothelial cell inflammation. Am J Physiol Lung Cell Mol Physiol. 2013;305(9):L651–64.
-
(2013)
Am J Physiol Lung Cell Mol Physiol
, vol.305
, Issue.9
, pp. 651-664
-
-
Leonard, A.1
-
134
-
-
84926298898
-
Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier
-
COI: 1:CAS:528:DC%2BC2MXhtF2itr3I, PID: 25828099
-
Tominaga N et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.
-
(2015)
Nat Commun
, vol.6
, pp. 6716
-
-
Tominaga, N.1
|