-
1
-
-
0242354134
-
Statistical process monitoring: Basics and beyond
-
S.J. Qin Statistical process monitoring: basics and beyond J. Chemom. 17 2003 480 502
-
(2003)
J. Chemom.
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
3
-
-
0001282938
-
On unifying multiblock analysis with application to decentralized process monitoring
-
S.J. Qin, S. Valle, and M.J. Piovoso On unifying multiblock analysis with application to decentralized process monitoring J. Chemom. 15 2001 715 742
-
(2001)
J. Chemom.
, vol.15
, pp. 715-742
-
-
Qin, S.J.1
Valle, S.2
Piovoso, M.J.3
-
4
-
-
84897108321
-
Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results
-
S.X. Ding Data-driven design of monitoring and diagnosis systems for dynamic processes: a review of subspace technique based schemes and some recent results J. Process Control 24 2014 431 449
-
(2014)
J. Process Control
, vol.24
, pp. 431-449
-
-
Ding, S.X.1
-
5
-
-
72149132838
-
Subspace method aided data-driven design of fault detection and isolation systems
-
S.X. Ding, P. Zhang, A. Naik, E.L. Ding, and B. Huang Subspace method aided data-driven design of fault detection and isolation systems J. Process Control 19 2009 1496 1510
-
(2009)
J. Process Control
, vol.19
, pp. 1496-1510
-
-
Ding, S.X.1
Zhang, P.2
Naik, A.3
Ding, E.L.4
Huang, B.5
-
6
-
-
0035882158
-
A new multivariate statistical process monitoring method using principal component analysis
-
M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno A new multivariate statistical process monitoring method using principal component analysis Comput. Chem. Eng. 25 2001 1103 1113
-
(2001)
Comput. Chem. Eng.
, vol.25
, pp. 1103-1113
-
-
Kano, M.1
Hasebe, S.2
Hashimoto, I.3
Ohno, H.4
-
7
-
-
0037457689
-
Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis
-
D.S. Lee, and P.A. Vanrolleghem Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis Biotechnol. Bioeng. 82 2003 489 497
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 489-497
-
-
Lee, D.S.1
Vanrolleghem, P.A.2
-
8
-
-
77956075435
-
Reconstruction-based contribution for process monitoring with kernel principal component analysis
-
C.F. Alcala, and S.J. Qin Reconstruction-based contribution for process monitoring with kernel principal component analysis Ind. Eng. Chem. Res. 49 2010 7849 7857
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 7849-7857
-
-
Alcala, C.F.1
Qin, S.J.2
-
9
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
W. Ku, R.H. Storer, and C. Georgakis Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 30 1995 179 196
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
10
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
J.M. Lee, C.K. Yoo, and I.B. Lee Statistical process monitoring with independent component analysis J. Process Control 14 2004 467 485
-
(2004)
J. Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
11
-
-
9744237208
-
Multiple-fault diagnosis of the Tennessee eastman process based on system decomposition and dynamic PLS
-
G. Lee, C.H. Han, and E.S. Yoon Multiple-fault diagnosis of the Tennessee eastman process based on system decomposition and dynamic PLS Ind. Eng. Chem. Res. 43 2004 8037 8048
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 8037-8048
-
-
Lee, G.1
Han, C.H.2
Yoon, E.S.3
-
13
-
-
0000466122
-
Survey on independent component analysis
-
A. Hyvarinen Survey on independent component analysis Neural Comput. Surv. 2 1999 94 128
-
(1999)
Neural Comput. Surv.
, vol.2
, pp. 94-128
-
-
Hyvarinen, A.1
-
14
-
-
0042826822
-
Independent component analysis: Algorithms and applications
-
A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw. 13 2000 411 430
-
(2000)
Neural Netw.
, vol.13
, pp. 411-430
-
-
Hyvärinen, A.1
Oja, E.2
-
15
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.B. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
16
-
-
63249084878
-
Improved kernel PCA-based monitoring approach for nonlinear processes
-
Z.Q. Ge, C.J. Yang, and Z.H. Song Improved kernel PCA-based monitoring approach for nonlinear processes Chem. Eng. Sci. 64 2009 2245 2255
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 2245-2255
-
-
Ge, Z.Q.1
Yang, C.J.2
Song, Z.H.3
-
17
-
-
78149465043
-
Process data modeling using modified kernel partial least squares
-
Y. Zhang, and Y. Teng Process data modeling using modified kernel partial least squares Chem. Eng. Sci. 65 2010 6353 6361
-
(2010)
Chem. Eng. Sci.
, vol.65
, pp. 6353-6361
-
-
Zhang, Y.1
Teng, Y.2
-
18
-
-
58749115727
-
Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
-
Y.W. Zhang Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 64 2009 801 811
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 801-811
-
-
Zhang, Y.W.1
-
19
-
-
53349175658
-
Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and Support Vector Machine (SVM)
-
Y.W. Zhang Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and Support Vector Machine (SVM) Ind. Eng. Chem. Res. 47 2008 6961 6971
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 6961-6971
-
-
Zhang, Y.W.1
-
20
-
-
34247109083
-
Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
-
Z.Q. Ge, and Z.H. Song Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 46 2007 2054 2063
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 2054-2063
-
-
Ge, Z.Q.1
Song, Z.H.2
-
21
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J.B. Tenenbaum, V. de Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 2000 2319
-
(2000)
Science
, vol.290
, pp. 2319
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
22
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 2000 2323
-
(2000)
Science
, vol.290
, pp. 2323
-
-
Roweis, S.T.1
Saul, L.K.2
-
23
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 2003 1373 1396
-
(2003)
Neural Comput.
, vol.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
24
-
-
44649092618
-
Multivariate statistical process control based on multiway locality preserving projections
-
K.L. Hu, and J.Q. Yuan Multivariate statistical process control based on multiway locality preserving projections J. Process Control 18 2008 797 807
-
(2008)
J. Process Control
, vol.18
, pp. 797-807
-
-
Hu, K.L.1
Yuan, J.Q.2
-
25
-
-
61749100891
-
Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis
-
J.D. Shao, G. Rong, and J.M. Lee Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis Chemom. Intell. Lab. 96 2009 75 83
-
(2009)
Chemom. Intell. Lab.
, vol.96
, pp. 75-83
-
-
Shao, J.D.1
Rong, G.2
Lee, J.M.3
-
26
-
-
79959985541
-
Global-local structure analysis model and its application for fault detection and identification
-
M.G. Zhang, Z.Q. Ge, Z.H. Song, and R.W. Fu Global-local structure analysis model and its application for fault detection and identification Ind. Eng. Chem. Res. 50 2011 6837 6848
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, pp. 6837-6848
-
-
Zhang, M.G.1
Ge, Z.Q.2
Song, Z.H.3
Fu, R.W.4
-
27
-
-
84864297252
-
Local and global principal component analysis for process monitoring
-
J.B. Yu Local and global principal component analysis for process monitoring J. Process Control 22 2012 1358 1373
-
(2012)
J. Process Control
, vol.22
, pp. 1358-1373
-
-
Yu, J.B.1
-
28
-
-
84885064046
-
Statistical process monitoring based on a multi-manifold projection algorithm
-
C.D. Tong, and X.F. Yan Statistical process monitoring based on a multi-manifold projection algorithm Chemom. Intell. Lab. 130 2014 20 28
-
(2014)
Chemom. Intell. Lab.
, vol.130
, pp. 20-28
-
-
Tong, C.D.1
Yan, X.F.2
-
29
-
-
84873346452
-
Distributed PCA model for plant-wide process monitoring
-
Z.Q. Ge, and Z.H. Song Distributed PCA model for plant-wide process monitoring Ind. Eng. Chem. Res. 52 2013 1947 1957
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 1947-1957
-
-
Ge, Z.Q.1
Song, Z.H.2
-
30
-
-
84898954322
-
Batch process monitoring based on multisubspace multiway principal component analysis and time-series Bayesian inference
-
Z.M. Lv, Q.C. Jiang, and X.F. Yan Batch process monitoring based on multisubspace multiway principal component analysis and time-series Bayesian inference Ind. Eng. Chem. Res. 53 2014 6457 6466
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 6457-6466
-
-
Lv, Z.M.1
Jiang, Q.C.2
Yan, X.F.3
-
31
-
-
84921880940
-
Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis
-
J. Huang, and X.F. Yan Gaussian and non-gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis Ind. Eng. Chem. Res. 54 2015 1015 1027
-
(2015)
Ind. Eng. Chem. Res.
, vol.54
, pp. 1015-1027
-
-
Huang, J.1
Yan, X.F.2
-
32
-
-
84921064752
-
Ensemble kernel principal component analysis for improved nonlinear process monitoring
-
N. Li, and Y.P. Yang Ensemble kernel principal component analysis for improved nonlinear process monitoring Ind. Eng. Chem. Res. 54 2015 318 329
-
(2015)
Ind. Eng. Chem. Res.
, vol.54
, pp. 318-329
-
-
Li, N.1
Yang, Y.P.2
-
33
-
-
22744452329
-
On-line dynamic process monitoring using wavelet-based generic dissimilarity measure
-
S.I. Alabi, A.J. Morris, and E.B. Martin On-line dynamic process monitoring using wavelet-based generic dissimilarity measure Chem. Eng. Res. Des. 83 2005 698 705
-
(2005)
Chem. Eng. Res. Des.
, vol.83
, pp. 698-705
-
-
Alabi, S.I.1
Morris, A.J.2
Martin, E.B.3
-
34
-
-
0942266514
-
Support vector data description
-
D.M.J. Tax, and R.P.W. Duin Support vector data description Mach. Learn. 54 2004 45 66
-
(2004)
Mach. Learn.
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
38
-
-
0027561446
-
A plant-wide industrial process control problem
-
J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
39
-
-
0029256836
-
Plant-wide control of the Tennessee Eastman problem
-
P.R. Lyman, and C. Georgakis Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 19 1995 321 331
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 321-331
-
-
Lyman, P.R.1
Georgakis, C.2
-
40
-
-
77749340024
-
Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
-
C.Y. Cheng, C.C. Hsu, and M.C. Chen Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes Ind. Eng. Chem. Res. 49 2010 2254 2262
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 2254-2262
-
-
Cheng, C.Y.1
Hsu, C.C.2
Chen, M.C.3
-
41
-
-
77955305868
-
Nonlinear process monitoring based on linear subspace and Bayesian inference
-
Z.Q. Ge, M.G. Zhang, and Z.H. Song Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 20 2010 676 688
-
(2010)
J. Process Control
, vol.20
, pp. 676-688
-
-
Ge, Z.Q.1
Zhang, M.G.2
Song, Z.H.3
|