메뉴 건너뛰기




Volumn 39, Issue , 2016, Pages 88-99

Related and independent variable fault detection based on KPCA and SVDD

Author keywords

Independent variables; Kernel principal component analysis; Process monitoring; Related variables; Support vector data description

Indexed keywords

DATA DESCRIPTION; FAULT DETECTION; NUMERICAL METHODS; PROCESS MONITORING;

EID: 84955263422     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2016.01.001     Document Type: Article
Times cited : (77)

References (41)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • S.J. Qin Statistical process monitoring: basics and beyond J. Chemom. 17 2003 480 502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 3
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multiblock analysis with application to decentralized process monitoring
    • S.J. Qin, S. Valle, and M.J. Piovoso On unifying multiblock analysis with application to decentralized process monitoring J. Chemom. 15 2001 715 742
    • (2001) J. Chemom. , vol.15 , pp. 715-742
    • Qin, S.J.1    Valle, S.2    Piovoso, M.J.3
  • 4
    • 84897108321 scopus 로고    scopus 로고
    • Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results
    • S.X. Ding Data-driven design of monitoring and diagnosis systems for dynamic processes: a review of subspace technique based schemes and some recent results J. Process Control 24 2014 431 449
    • (2014) J. Process Control , vol.24 , pp. 431-449
    • Ding, S.X.1
  • 5
    • 72149132838 scopus 로고    scopus 로고
    • Subspace method aided data-driven design of fault detection and isolation systems
    • S.X. Ding, P. Zhang, A. Naik, E.L. Ding, and B. Huang Subspace method aided data-driven design of fault detection and isolation systems J. Process Control 19 2009 1496 1510
    • (2009) J. Process Control , vol.19 , pp. 1496-1510
    • Ding, S.X.1    Zhang, P.2    Naik, A.3    Ding, E.L.4    Huang, B.5
  • 6
    • 0035882158 scopus 로고    scopus 로고
    • A new multivariate statistical process monitoring method using principal component analysis
    • M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno A new multivariate statistical process monitoring method using principal component analysis Comput. Chem. Eng. 25 2001 1103 1113
    • (2001) Comput. Chem. Eng. , vol.25 , pp. 1103-1113
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 7
    • 0037457689 scopus 로고    scopus 로고
    • Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis
    • D.S. Lee, and P.A. Vanrolleghem Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis Biotechnol. Bioeng. 82 2003 489 497
    • (2003) Biotechnol. Bioeng. , vol.82 , pp. 489-497
    • Lee, D.S.1    Vanrolleghem, P.A.2
  • 8
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • C.F. Alcala, and S.J. Qin Reconstruction-based contribution for process monitoring with kernel principal component analysis Ind. Eng. Chem. Res. 49 2010 7849 7857
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2
  • 9
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • W. Ku, R.H. Storer, and C. Georgakis Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 30 1995 179 196
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 10
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • J.M. Lee, C.K. Yoo, and I.B. Lee Statistical process monitoring with independent component analysis J. Process Control 14 2004 467 485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 11
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee eastman process based on system decomposition and dynamic PLS
    • G. Lee, C.H. Han, and E.S. Yoon Multiple-fault diagnosis of the Tennessee eastman process based on system decomposition and dynamic PLS Ind. Eng. Chem. Res. 43 2004 8037 8048
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 8037-8048
    • Lee, G.1    Han, C.H.2    Yoon, E.S.3
  • 12
  • 13
    • 0000466122 scopus 로고    scopus 로고
    • Survey on independent component analysis
    • A. Hyvarinen Survey on independent component analysis Neural Comput. Surv. 2 1999 94 128
    • (1999) Neural Comput. Surv. , vol.2 , pp. 94-128
    • Hyvarinen, A.1
  • 14
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw. 13 2000 411 430
    • (2000) Neural Netw. , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 15
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.B. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 16
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Z.Q. Ge, C.J. Yang, and Z.H. Song Improved kernel PCA-based monitoring approach for nonlinear processes Chem. Eng. Sci. 64 2009 2245 2255
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 17
    • 78149465043 scopus 로고    scopus 로고
    • Process data modeling using modified kernel partial least squares
    • Y. Zhang, and Y. Teng Process data modeling using modified kernel partial least squares Chem. Eng. Sci. 65 2010 6353 6361
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 6353-6361
    • Zhang, Y.1    Teng, Y.2
  • 18
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Y.W. Zhang Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 64 2009 801 811
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801-811
    • Zhang, Y.W.1
  • 19
    • 53349175658 scopus 로고    scopus 로고
    • Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and Support Vector Machine (SVM)
    • Y.W. Zhang Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and Support Vector Machine (SVM) Ind. Eng. Chem. Res. 47 2008 6961 6971
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 6961-6971
    • Zhang, Y.W.1
  • 20
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Z.Q. Ge, and Z.H. Song Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 46 2007 2054 2063
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 21
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 2000 2319
    • (2000) Science , vol.290 , pp. 2319
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 2000 2323
    • (2000) Science , vol.290 , pp. 2323
    • Roweis, S.T.1    Saul, L.K.2
  • 23
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 2003 1373 1396
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 24
    • 44649092618 scopus 로고    scopus 로고
    • Multivariate statistical process control based on multiway locality preserving projections
    • K.L. Hu, and J.Q. Yuan Multivariate statistical process control based on multiway locality preserving projections J. Process Control 18 2008 797 807
    • (2008) J. Process Control , vol.18 , pp. 797-807
    • Hu, K.L.1    Yuan, J.Q.2
  • 25
    • 61749100891 scopus 로고    scopus 로고
    • Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis
    • J.D. Shao, G. Rong, and J.M. Lee Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis Chemom. Intell. Lab. 96 2009 75 83
    • (2009) Chemom. Intell. Lab. , vol.96 , pp. 75-83
    • Shao, J.D.1    Rong, G.2    Lee, J.M.3
  • 26
    • 79959985541 scopus 로고    scopus 로고
    • Global-local structure analysis model and its application for fault detection and identification
    • M.G. Zhang, Z.Q. Ge, Z.H. Song, and R.W. Fu Global-local structure analysis model and its application for fault detection and identification Ind. Eng. Chem. Res. 50 2011 6837 6848
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 6837-6848
    • Zhang, M.G.1    Ge, Z.Q.2    Song, Z.H.3    Fu, R.W.4
  • 27
    • 84864297252 scopus 로고    scopus 로고
    • Local and global principal component analysis for process monitoring
    • J.B. Yu Local and global principal component analysis for process monitoring J. Process Control 22 2012 1358 1373
    • (2012) J. Process Control , vol.22 , pp. 1358-1373
    • Yu, J.B.1
  • 28
    • 84885064046 scopus 로고    scopus 로고
    • Statistical process monitoring based on a multi-manifold projection algorithm
    • C.D. Tong, and X.F. Yan Statistical process monitoring based on a multi-manifold projection algorithm Chemom. Intell. Lab. 130 2014 20 28
    • (2014) Chemom. Intell. Lab. , vol.130 , pp. 20-28
    • Tong, C.D.1    Yan, X.F.2
  • 29
    • 84873346452 scopus 로고    scopus 로고
    • Distributed PCA model for plant-wide process monitoring
    • Z.Q. Ge, and Z.H. Song Distributed PCA model for plant-wide process monitoring Ind. Eng. Chem. Res. 52 2013 1947 1957
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 1947-1957
    • Ge, Z.Q.1    Song, Z.H.2
  • 30
    • 84898954322 scopus 로고    scopus 로고
    • Batch process monitoring based on multisubspace multiway principal component analysis and time-series Bayesian inference
    • Z.M. Lv, Q.C. Jiang, and X.F. Yan Batch process monitoring based on multisubspace multiway principal component analysis and time-series Bayesian inference Ind. Eng. Chem. Res. 53 2014 6457 6466
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 6457-6466
    • Lv, Z.M.1    Jiang, Q.C.2    Yan, X.F.3
  • 31
    • 84921880940 scopus 로고    scopus 로고
    • Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis
    • J. Huang, and X.F. Yan Gaussian and non-gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis Ind. Eng. Chem. Res. 54 2015 1015 1027
    • (2015) Ind. Eng. Chem. Res. , vol.54 , pp. 1015-1027
    • Huang, J.1    Yan, X.F.2
  • 32
    • 84921064752 scopus 로고    scopus 로고
    • Ensemble kernel principal component analysis for improved nonlinear process monitoring
    • N. Li, and Y.P. Yang Ensemble kernel principal component analysis for improved nonlinear process monitoring Ind. Eng. Chem. Res. 54 2015 318 329
    • (2015) Ind. Eng. Chem. Res. , vol.54 , pp. 318-329
    • Li, N.1    Yang, Y.P.2
  • 33
    • 22744452329 scopus 로고    scopus 로고
    • On-line dynamic process monitoring using wavelet-based generic dissimilarity measure
    • S.I. Alabi, A.J. Morris, and E.B. Martin On-line dynamic process monitoring using wavelet-based generic dissimilarity measure Chem. Eng. Res. Des. 83 2005 698 705
    • (2005) Chem. Eng. Res. Des. , vol.83 , pp. 698-705
    • Alabi, S.I.1    Morris, A.J.2    Martin, E.B.3
  • 34
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax, and R.P.W. Duin Support vector data description Mach. Learn. 54 2004 45 66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 35
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • D.M.J. Tax, and R.P.W. Duin Support vector domain description Pattern Recogn. Lett. 20 1999 1191 1199
    • (1999) Pattern Recogn. Lett. , vol.20 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 38
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 39
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • P.R. Lyman, and C. Georgakis Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 19 1995 321 331
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 40
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
    • C.Y. Cheng, C.C. Hsu, and M.C. Chen Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes Ind. Eng. Chem. Res. 49 2010 2254 2262
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 2254-2262
    • Cheng, C.Y.1    Hsu, C.C.2    Chen, M.C.3
  • 41
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Z.Q. Ge, M.G. Zhang, and Z.H. Song Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 20 2010 676 688
    • (2010) J. Process Control , vol.20 , pp. 676-688
    • Ge, Z.Q.1    Zhang, M.G.2    Song, Z.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.