메뉴 건너뛰기




Volumn 130, Issue , 2014, Pages 20-28

Statistical process monitoring based on a multi-manifold projection algorithm

Author keywords

Feature extraction; Manifold learning; Principal component analysis; Process monitoring

Indexed keywords

FAULT DETECTION; PROCESS MONITORING; STATISTICAL PROCESS CONTROL;

EID: 84885064046     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.09.006     Document Type: Article
Times cited : (44)

References (35)
  • 2
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17:480-502.
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 3
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis. Part III: process history based method
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N., Yin K. A review of process fault detection and diagnosis. Part III: process history based method. Comput. Chem. Eng. 2003, 27:327-346.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 4
    • 1142309573 scopus 로고    scopus 로고
    • Sensor fault identification based on time-lagged PCA in dynamic processes
    • Lee C., Choi S.W., Lee I.B. Sensor fault identification based on time-lagged PCA in dynamic processes. Chemom. Intell. Lab. Syst. 2004, 70:165-178.
    • (2004) Chemom. Intell. Lab. Syst. , vol.70 , pp. 165-178
    • Lee, C.1    Choi, S.W.2    Lee, I.B.3
  • 5
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS model
    • Chen J., Liu K.-C. On-line batch process monitoring using dynamic PCA and dynamic PLS model. Chem. Eng. Sci. 2002, 57:63-75.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 63-75
    • Chen, J.1    Liu, K.-C.2
  • 6
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 7
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44:5691-5702.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 8
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
    • Xie X., Shi H.B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Ind. Eng. Chem. Res. 2012, 51:5497-5505.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 9
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • Kano M., Tanaka S., Hasebe S., Hashimoto I. Monitoring independent components for fault detection. AICHE J. 2003, 49:969-976.
    • (2003) AICHE J. , vol.49 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4
  • 10
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 11
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge Z.Q., Song Z.H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Ind. Eng. Chem. Res. 2007, 46:2054-2063.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 12
    • 31844444381 scopus 로고    scopus 로고
    • Statistical and computational analysis of locality preserving projection
    • He X.F., Min W. Statistical and computational analysis of locality preserving projection. Int. Conf. Mach. Learn. 2005, 119:281-288.
    • (2005) Int. Conf. Mach. Learn. , vol.119 , pp. 281-288
    • He, X.F.1    Min, W.2
  • 13
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 14
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 16
    • 79953045567 scopus 로고    scopus 로고
    • A multi-manifold discriminant analysis method for image feature extraction
    • Yang W., Sun C., Zhang L. A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognit. 2011, 44:1649-1657.
    • (2011) Pattern Recognit. , vol.44 , pp. 1649-1657
    • Yang, W.1    Sun, C.2    Zhang, L.3
  • 17
    • 78649566042 scopus 로고    scopus 로고
    • A structure-preserved local matching approach for face recognition
    • Wang J., Ma Z., Zhang B., Qi M., Kong J. A structure-preserved local matching approach for face recognition. Pattern Recognit. 2011, 32:494-504.
    • (2011) Pattern Recognit. , vol.32 , pp. 494-504
    • Wang, J.1    Ma, Z.2    Zhang, B.3    Qi, M.4    Kong, J.5
  • 18
    • 84869424547 scopus 로고    scopus 로고
    • Direct discriminant locality preserving projection with Hammerstein polynomial expansion
    • Chen X., Zhang J., Li D. Direct discriminant locality preserving projection with Hammerstein polynomial expansion. IEEE Trans. Image Process. 2012, 21:4858-4867.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4858-4867
    • Chen, X.1    Zhang, J.2    Li, D.3
  • 19
    • 84873844417 scopus 로고    scopus 로고
    • Minimum-maximum local structure information for feature selection
    • Hu W., Choi K.S., Gu Y., Wang S. Minimum-maximum local structure information for feature selection. Pattern Recognit. Lett. 2013, 34:527-535.
    • (2013) Pattern Recognit. Lett. , vol.34 , pp. 527-535
    • Hu, W.1    Choi, K.S.2    Gu, Y.3    Wang, S.4
  • 20
    • 44649092618 scopus 로고    scopus 로고
    • Multivariate statistical process control based on multiway locality preserving projections
    • Hu K.L., Yuan J.Q. Multivariate statistical process control based on multiway locality preserving projections. J. Process Control 2008, 18:797-807.
    • (2008) J. Process Control , vol.18 , pp. 797-807
    • Hu, K.L.1    Yuan, J.Q.2
  • 21
    • 61749100891 scopus 로고    scopus 로고
    • Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis
    • Shao J.D., Rong G., Lee J.M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis. Chemom. Intell. Lab. Syst. 2009, 96:75-83.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 75-83
    • Shao, J.D.1    Rong, G.2    Lee, J.M.3
  • 22
    • 79959985541 scopus 로고    scopus 로고
    • Global-local structure analysis model and its application for fault detection and identification
    • Zhang M.G., Ge Z.Q., Song Z.H., Fu R.W. Global-local structure analysis model and its application for fault detection and identification. Ind. Eng. Chem. Res 2011, 50:6837-6848.
    • (2011) Ind. Eng. Chem. Res , vol.50 , pp. 6837-6848
    • Zhang, M.G.1    Ge, Z.Q.2    Song, Z.H.3    Fu, R.W.4
  • 23
    • 84864297252 scopus 로고    scopus 로고
    • Local and global principal component analysis for process monitoring
    • Yu J.B. Local and global principal component analysis for process monitoring. J. Process Control 2012, 22:1358-1373.
    • (2012) J. Process Control , vol.22 , pp. 1358-1373
    • Yu, J.B.1
  • 25
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • Westerhuis J.A., Gurden S.P., Smilde A.K. Generalized contribution plots in multivariate statistical process monitoring. Chemom. Intell. Lab. Syst. 2000, 51:95-114.
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , pp. 95-114
    • Westerhuis, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 26
    • 0029252734 scopus 로고    scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1999, 37:41-59.
    • (1999) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 28
    • 67349245154 scopus 로고    scopus 로고
    • Reconstructed-based contribution for process monitoring
    • Alcala C.F., Qin S.J. Reconstructed-based contribution for process monitoring. Automatica 2009, 45:1593-1600.
    • (2009) Automatica , vol.45 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 29
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models, part I: using steady state fault signatures
    • Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models, part I: using steady state fault signatures. J. Process Control 2001, 11:387-400.
    • (2001) J. Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 30
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 31
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 1995, 30:179-196.
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 32
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman P.R., Georgakis C. Plant-wide control of the Tennessee Eastman problem. Comput. Chem. Eng. 1995, 19:321-331.
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 33
    • 77249178133 scopus 로고    scopus 로고
    • A novel process monitoring approach with dynamic independent component analysis
    • Hsu C.C., Chen M.C., Chen L.S. A novel process monitoring approach with dynamic independent component analysis. Control Eng. Pract. 2010, 18:242-253.
    • (2010) Control Eng. Pract. , vol.18 , pp. 242-253
    • Hsu, C.C.1    Chen, M.C.2    Chen, L.S.3
  • 34
    • 79959245830 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring based on statistics pattern analysis
    • Wang J., He Q.P. Multivariate statistical process monitoring based on statistics pattern analysis. Ind. Eng. Chem. Res. 2010, 49:7858-7869.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 7858-7869
    • Wang, J.1    He, Q.P.2
  • 35
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J., Qin S.J., Lee I.-B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006, 52:3501-3514.
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.1    Qin, S.J.2    Lee, I.-B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.