-
1
-
-
84872977452
-
Innate lymphoid cells - a proposal for uniform nomenclature
-
Spits H., Artis D., Colonna M., Diefenbach A., Di Santo J.P., Eberl G., Koyasu S., Locksley R.M., McKenzie A.N., Mebius R.E., et al. Innate lymphoid cells - a proposal for uniform nomenclature. Nat Rev Immunol 2013, 13:145-149.
-
(2013)
Nat Rev Immunol
, vol.13
, pp. 145-149
-
-
Spits, H.1
Artis, D.2
Colonna, M.3
Diefenbach, A.4
Di Santo, J.P.5
Eberl, G.6
Koyasu, S.7
Locksley, R.M.8
McKenzie, A.N.9
Mebius, R.E.10
-
2
-
-
84923436228
-
Immunological Genome C: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets
-
Robinette M.L., Fuchs A., Cortez V.S., Lee J.S., Wang Y., Durum S.K., Gilfillan S., Colonna M. Immunological Genome C: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol 2015, 16:306-317.
-
(2015)
Nat Immunol
, vol.16
, pp. 306-317
-
-
Robinette, M.L.1
Fuchs, A.2
Cortez, V.S.3
Lee, J.S.4
Wang, Y.5
Durum, S.K.6
Gilfillan, S.7
Colonna, M.8
-
3
-
-
84929961969
-
Perforin and granzymes: function, dysfunction and human pathology
-
Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 2015, 15:388-400.
-
(2015)
Nat Rev Immunol
, vol.15
, pp. 388-400
-
-
Voskoboinik, I.1
Whisstock, J.C.2
Trapani, J.A.3
-
4
-
-
34547127636
-
Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1
-
Huntington N.D., Puthalakath H., Gunn P., Naik E., Michalak E.M., Smyth M.J., Tabarias H., Degli-Esposti M.A., Dewson G., Willis S.N., et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 2007, 8:856-863.
-
(2007)
Nat Immunol
, vol.8
, pp. 856-863
-
-
Huntington, N.D.1
Puthalakath, H.2
Gunn, P.3
Naik, E.4
Michalak, E.M.5
Smyth, M.J.6
Tabarias, H.7
Degli-Esposti, M.A.8
Dewson, G.9
Willis, S.N.10
-
5
-
-
84899464260
-
The unconventional expression of IL-15 and its role in NK cell homeostasis
-
Huntington N.D. The unconventional expression of IL-15 and its role in NK cell homeostasis. Immunol Cell Biol 2014, 92:210-213.
-
(2014)
Immunol Cell Biol
, vol.92
, pp. 210-213
-
-
Huntington, N.D.1
-
6
-
-
33645759947
-
STAT5-mediated signals sustain a TCR-initiated gene expression program toward differentiation of CD8 T cell effectors
-
Verdeil G., Puthier D., Nguyen C., Schmitt-Verhulst A.M., Auphan-Anezin N. STAT5-mediated signals sustain a TCR-initiated gene expression program toward differentiation of CD8 T cell effectors. J Immunol 2006, 176:4834-4842.
-
(2006)
J Immunol
, vol.176
, pp. 4834-4842
-
-
Verdeil, G.1
Puthier, D.2
Nguyen, C.3
Schmitt-Verhulst, A.M.4
Auphan-Anezin, N.5
-
7
-
-
84885156779
-
Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-beta1 signaling
-
Grange M., Verdeil G., Arnoux F., Griffon A., Spicuglia S., Maurizio J., Buferne M., Schmitt-Verhulst A.M., Auphan-Anezin N. Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-beta1 signaling. J Immunol 2013, 191:3712-3724.
-
(2013)
J Immunol
, vol.191
, pp. 3712-3724
-
-
Grange, M.1
Verdeil, G.2
Arnoux, F.3
Griffon, A.4
Spicuglia, S.5
Maurizio, J.6
Buferne, M.7
Schmitt-Verhulst, A.M.8
Auphan-Anezin, N.9
-
8
-
-
84907377182
-
Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells
-
Sathe P., Delconte R.B., Souza-Fonseca-Guimaraes F., Seillet C., Chopin M., Vandenberg C.J., Rankin L.C., Mielke L.A., Vikstrom I., Kolesnik T.B., et al. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun 2014, 5:4539.
-
(2014)
Nat Commun
, vol.5
, pp. 4539
-
-
Sathe, P.1
Delconte, R.B.2
Souza-Fonseca-Guimaraes, F.3
Seillet, C.4
Chopin, M.5
Vandenberg, C.J.6
Rankin, L.C.7
Mielke, L.A.8
Vikstrom, I.9
Kolesnik, T.B.10
-
9
-
-
0348148880
-
Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1
-
Opferman J.T., Letai A., Beard C., Sorcinelli M.D., Ong C.C., Korsmeyer S.J. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003, 426:671-676.
-
(2003)
Nature
, vol.426
, pp. 671-676
-
-
Opferman, J.T.1
Letai, A.2
Beard, C.3
Sorcinelli, M.D.4
Ong, C.C.5
Korsmeyer, S.J.6
-
10
-
-
60549117539
-
IL-15 trans-presentation promotes human NK cell development and differentiation in vivo
-
Huntington N.D., Legrand N., Alves N.L., Jaron B., Weijer K., Plet A., Corcuff E., Mortier E., Jacques Y., Spits H., et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 2009, 206:25-34.
-
(2009)
J Exp Med
, vol.206
, pp. 25-34
-
-
Huntington, N.D.1
Legrand, N.2
Alves, N.L.3
Jaron, B.4
Weijer, K.5
Plet, A.6
Corcuff, E.7
Mortier, E.8
Jacques, Y.9
Spits, H.10
-
11
-
-
0035862325
-
Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells
-
Fehniger T.A., Suzuki K., Ponnappan A., VanDeusen J.B., Cooper M.A., Florea S.M., Freud A.G., Robinson M.L., Durbin J., Caligiuri M.A. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 2001, 193:219-231.
-
(2001)
J Exp Med
, vol.193
, pp. 219-231
-
-
Fehniger, T.A.1
Suzuki, K.2
Ponnappan, A.3
VanDeusen, J.B.4
Cooper, M.A.5
Florea, S.M.6
Freud, A.G.7
Robinson, M.L.8
Durbin, J.9
Caligiuri, M.A.10
-
12
-
-
55749101748
-
IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response
-
Rubinstein M.P., Lind N.A., Purton J.F., Filippou P., Best J.A., McGhee P.A., Surh C.D., Goldrath A.W. IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood 2008, 112:3704-3712.
-
(2008)
Blood
, vol.112
, pp. 3704-3712
-
-
Rubinstein, M.P.1
Lind, N.A.2
Purton, J.F.3
Filippou, P.4
Best, J.A.5
McGhee, P.A.6
Surh, C.D.7
Goldrath, A.W.8
-
13
-
-
0034663776
-
Cutting edge: naive T cells masquerading as memory cells
-
Murali-Krishna K., Ahmed R. Cutting edge: naive T cells masquerading as memory cells. J Immunol 2000, 165:1733-1737.
-
(2000)
J Immunol
, vol.165
, pp. 1733-1737
-
-
Murali-Krishna, K.1
Ahmed, R.2
-
14
-
-
0034698931
-
Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation
-
Goldrath A.W., Bogatzki L.Y., Bevan M.J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 2000, 192:557-564.
-
(2000)
J Exp Med
, vol.192
, pp. 557-564
-
-
Goldrath, A.W.1
Bogatzki, L.Y.2
Bevan, M.J.3
-
15
-
-
34247170073
-
NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation
-
Huntington N.D., Tabarias H., Fairfax K., Brady J., Hayakawa Y., Degli-Esposti M.A., Smyth M.J., Tarlinton D.M., Nutt S.L. NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J Immunol 2007, 178:4764-4770.
-
(2007)
J Immunol
, vol.178
, pp. 4764-4770
-
-
Huntington, N.D.1
Tabarias, H.2
Fairfax, K.3
Brady, J.4
Hayakawa, Y.5
Degli-Esposti, M.A.6
Smyth, M.J.7
Tarlinton, D.M.8
Nutt, S.L.9
-
16
-
-
80053133221
-
NK cell development, homeostasis and function: parallels with CD8(+) T cells
-
Sun J.C., Lanier L.L. NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 2011, 11:645-657.
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 645-657
-
-
Sun, J.C.1
Lanier, L.L.2
-
17
-
-
0034698828
-
Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells
-
Cho B.K., Rao V.P., Ge Q., Eisen H.N., Chen J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 2000, 192:549-556.
-
(2000)
J Exp Med
, vol.192
, pp. 549-556
-
-
Cho, B.K.1
Rao, V.P.2
Ge, Q.3
Eisen, H.N.4
Chen, J.5
-
18
-
-
84904725488
-
The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells
-
Marcais A., Cherfils-Vicini J., Viant C., Degouve S., Viel S., Fenis A., Rabilloud J., Mayol K., Tavares A., Bienvenu J., et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 2014, 15:749-757.
-
(2014)
Nat Immunol
, vol.15
, pp. 749-757
-
-
Marcais, A.1
Cherfils-Vicini, J.2
Viant, C.3
Degouve, S.4
Viel, S.5
Fenis, A.6
Rabilloud, J.7
Mayol, K.8
Tavares, A.9
Bienvenu, J.10
-
19
-
-
84929008302
-
MTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation
-
Pollizzi K.N., Patel C.H., Sun I.H., Oh M.H., Waickman A.T., Wen J., Delgoffe G.M., Powell J.D. mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J Clin Invest 2015, 125:2090-2108.
-
(2015)
J Clin Invest
, vol.125
, pp. 2090-2108
-
-
Pollizzi, K.N.1
Patel, C.H.2
Sun, I.H.3
Oh, M.H.4
Waickman, A.T.5
Wen, J.6
Delgoffe, G.M.7
Powell, J.D.8
-
20
-
-
84876780238
-
Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells
-
Fuchs A., Vermi W., Lee J.S., Lonardi S., Gilfillan S., Newberry R.D., Cella M., Colonna M. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 2013, 38:769-781.
-
(2013)
Immunity
, vol.38
, pp. 769-781
-
-
Fuchs, A.1
Vermi, W.2
Lee, J.S.3
Lonardi, S.4
Gilfillan, S.5
Newberry, R.D.6
Cella, M.7
Colonna, M.8
-
21
-
-
84898640432
-
Differentiation of Type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages
-
Klose C.S., Flach M., Mohle L., Rogell L., Hoyler T., Ebert K., Fabiunke C., Pfeifer D., Sexl V., Fonseca-Pereira D., et al. Differentiation of Type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014, 157:340-356.
-
(2014)
Cell
, vol.157
, pp. 340-356
-
-
Klose, C.S.1
Flach, M.2
Mohle, L.3
Rogell, L.4
Hoyler, T.5
Ebert, K.6
Fabiunke, C.7
Pfeifer, D.8
Sexl, V.9
Fonseca-Pereira, D.10
-
22
-
-
84899448933
-
A committed precursor to innate lymphoid cells
-
Constantinides M.G., McDonald B.D., Verhoef P.A., Bendelac A. A committed precursor to innate lymphoid cells. Nature 2014, 508:397-401.
-
(2014)
Nature
, vol.508
, pp. 397-401
-
-
Constantinides, M.G.1
McDonald, B.D.2
Verhoef, P.A.3
Bendelac, A.4
-
23
-
-
33749526537
-
Identification of pre- and postselection TCRalphabeta+ intraepithelial lymphocyte precursors in the thymus
-
Gangadharan D., Lambolez F., Attinger A., Wang-Zhu Y., Sullivan B.A., Cheroutre H. Identification of pre- and postselection TCRalphabeta+ intraepithelial lymphocyte precursors in the thymus. Immunity 2006, 25:631-641.
-
(2006)
Immunity
, vol.25
, pp. 631-641
-
-
Gangadharan, D.1
Lambolez, F.2
Attinger, A.3
Wang-Zhu, Y.4
Sullivan, B.A.5
Cheroutre, H.6
-
24
-
-
84861233512
-
Clonal deletion and the fate of autoreactive thymocytes that survive negative selection
-
Pobezinsky L.A., Angelov G.S., Tai X., Jeurling S., Van Laethem F., Feigenbaum L., Park J.H., Singer A. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat Immunol 2012, 13:569-578.
-
(2012)
Nat Immunol
, vol.13
, pp. 569-578
-
-
Pobezinsky, L.A.1
Angelov, G.S.2
Tai, X.3
Jeurling, S.4
Van Laethem, F.5
Feigenbaum, L.6
Park, J.H.7
Singer, A.8
-
25
-
-
84907365390
-
The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8alphaalpha(+) intraepithelial lymphocyte development
-
Klose C.S., Blatz K., d'Hargues Y., Hernandez P.P., Kofoed-Nielsen M., Ripka J.F., Ebert K., Arnold S.J., Diefenbach A., Palmer E., et al. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8alphaalpha(+) intraepithelial lymphocyte development. Immunity 2014, 41:230-243.
-
(2014)
Immunity
, vol.41
, pp. 230-243
-
-
Klose, C.S.1
Blatz, K.2
d'Hargues, Y.3
Hernandez, P.P.4
Kofoed-Nielsen, M.5
Ripka, J.F.6
Ebert, K.7
Arnold, S.J.8
Diefenbach, A.9
Palmer, E.10
-
26
-
-
84954138953
-
Id2 governs natural killer cell fate by tuning their sensitivity to IL-15
-
(In press)
-
Delconte R.B., Shi W., Sathe P., Ushiki T., Seillet C., Minnich M., Kolesnik T.B., Rankin L.C., Mielke L.A., Zhang J.-G., et al. Id2 governs natural killer cell fate by tuning their sensitivity to IL-15. Immunity 2015, (In press).
-
(2015)
Immunity
-
-
Delconte, R.B.1
Shi, W.2
Sathe, P.3
Ushiki, T.4
Seillet, C.5
Minnich, M.6
Kolesnik, T.B.7
Rankin, L.C.8
Mielke, L.A.9
Zhang, J.-G.10
-
27
-
-
81255144662
-
The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets
-
Yang C.Y., Best J.A., Knell J., Yang E., Sheridan A.D., Jesionek A.K., Li H.S., Rivera R.R., Lind K.C., D'Cruz L.M., et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat Immunol 2011, 12:1221-1229.
-
(2011)
Nat Immunol
, vol.12
, pp. 1221-1229
-
-
Yang, C.Y.1
Best, J.A.2
Knell, J.3
Yang, E.4
Sheridan, A.D.5
Jesionek, A.K.6
Li, H.S.7
Rivera, R.R.8
Lind, K.C.9
D'Cruz, L.M.10
-
28
-
-
84901699999
-
Id2 represses E2A-mediated activation of IL-10 expression in T cells
-
Masson F., Ghisi M., Groom J.R., Kallies A., Seillet C., Johnstone R.W., Nutt S.L., Belz G.T. Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood 2014, 123:3420-3428.
-
(2014)
Blood
, vol.123
, pp. 3420-3428
-
-
Masson, F.1
Ghisi, M.2
Groom, J.R.3
Kallies, A.4
Seillet, C.5
Johnstone, R.W.6
Nutt, S.L.7
Belz, G.T.8
-
29
-
-
84876809323
-
Id2-mediated inhibition of E2A represses memory CD8+ T cell differentiation
-
Masson F., Minnich M., Olshansky M., Bilic I., Mount A.M., Kallies A., Speed T.P., Busslinger M., Nutt S.L., Belz G.T. Id2-mediated inhibition of E2A represses memory CD8+ T cell differentiation. J Immunol 2013, 190:4585-4594.
-
(2013)
J Immunol
, vol.190
, pp. 4585-4594
-
-
Masson, F.1
Minnich, M.2
Olshansky, M.3
Bilic, I.4
Mount, A.M.5
Kallies, A.6
Speed, T.P.7
Busslinger, M.8
Nutt, S.L.9
Belz, G.T.10
-
30
-
-
84873527577
-
Id2 influences differentiation of killer cell lectin-like receptor G1(hi) short-lived CD8+ effector T cells
-
Knell J., Best J.A., Lind N.A., Yang E., D'Cruz L.M., Goldrath A.W. Id2 influences differentiation of killer cell lectin-like receptor G1(hi) short-lived CD8+ effector T cells. J Immunol 2013, 190:1501-1509.
-
(2013)
J Immunol
, vol.190
, pp. 1501-1509
-
-
Knell, J.1
Best, J.A.2
Lind, N.A.3
Yang, E.4
D'Cruz, L.M.5
Goldrath, A.W.6
-
31
-
-
84980319820
-
Bcl11b is essential for group 2 innate lymphoid cell development
-
Walker J.A., Oliphant C.J., Englezakis A., Yu Y., Clare S., Rodewald H.R., Belz G., Liu P., Fallon P.G., McKenzie A.N. Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med 2015, 212:875-882.
-
(2015)
J Exp Med
, vol.212
, pp. 875-882
-
-
Walker, J.A.1
Oliphant, C.J.2
Englezakis, A.3
Yu, Y.4
Clare, S.5
Rodewald, H.R.6
Belz, G.7
Liu, P.8
Fallon, P.G.9
McKenzie, A.N.10
-
32
-
-
84941006177
-
Transcription factor Bcl11b controls identity and function of mature Type 2 innate lymphoid cells
-
Califano D., Cho J.J., Uddin M.N., Lorentsen K.J., Yang Q., Bhandoola A., Li H., Avram D. Transcription factor Bcl11b controls identity and function of mature Type 2 innate lymphoid cells. Immunity 2015, 43:354-368.
-
(2015)
Immunity
, vol.43
, pp. 354-368
-
-
Califano, D.1
Cho, J.J.2
Uddin, M.N.3
Lorentsen, K.J.4
Yang, Q.5
Bhandoola, A.6
Li, H.7
Avram, D.8
-
33
-
-
84980390670
-
The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development
-
Yu Y., Wang C., Clare S., Wang J., Lee S.C., Brandt C., Burke S., Lu L., He D., Jenkins N.A., et al. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med 2015, 212:865-874.
-
(2015)
J Exp Med
, vol.212
, pp. 865-874
-
-
Yu, Y.1
Wang, C.2
Clare, S.3
Wang, J.4
Lee, S.C.5
Brandt, C.6
Burke, S.7
Lu, L.8
He, D.9
Jenkins, N.A.10
-
34
-
-
84863393407
-
Transcription factor RORalpha is critical for nuocyte development
-
Wong S.H., Walker J.A., Jolin H.E., Drynan L.F., Hams E., Camelo A., Barlow J.L., Neill D.R., Panova V., Koch U., et al. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 2012, 13:229-236.
-
(2012)
Nat Immunol
, vol.13
, pp. 229-236
-
-
Wong, S.H.1
Walker, J.A.2
Jolin, H.E.3
Drynan, L.F.4
Hams, E.5
Camelo, A.6
Barlow, J.L.7
Neill, D.R.8
Panova, V.9
Koch, U.10
-
35
-
-
84896396519
-
The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells
-
Yagi R., Zhong C., Northrup D.L., Yu F., Bouladoux N., Spencer S., Hu G., Barron L., Sharma S., Nakayama T., et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 2014, 40:378-388.
-
(2014)
Immunity
, vol.40
, pp. 378-388
-
-
Yagi, R.1
Zhong, C.2
Northrup, D.L.3
Yu, F.4
Bouladoux, N.5
Spencer, S.6
Hu, G.7
Barron, L.8
Sharma, S.9
Nakayama, T.10
-
36
-
-
84867773093
-
The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells
-
Mjosberg J., Bernink J., Golebski K., Karrich J.J., Peters C.P., Blom B., te Velde A.A., Fokkens W.J., van Drunen C.M., Spits H. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 2012, 37:649-659.
-
(2012)
Immunity
, vol.37
, pp. 649-659
-
-
Mjosberg, J.1
Bernink, J.2
Golebski, K.3
Karrich, J.J.4
Peters, C.P.5
Blom, B.6
te Velde, A.A.7
Fokkens, W.J.8
van Drunen, C.M.9
Spits, H.10
-
37
-
-
84877082277
-
Development and function of group 2 innate lymphoid cells
-
Walker J.A., McKenzie A.N. Development and function of group 2 innate lymphoid cells. Curr Opin Immunol 2013, 25:148-155.
-
(2013)
Curr Opin Immunol
, vol.25
, pp. 148-155
-
-
Walker, J.A.1
McKenzie, A.N.2
-
38
-
-
15844374279
-
Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene
-
Shimoda K., van Deursen J., Sangster M.Y., Sarawar S.R., Carson R.T., Tripp R.A., Chu C., Quelle F.W., Nosaka T., Vignali D.A., et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996, 380:630-633.
-
(1996)
Nature
, vol.380
, pp. 630-633
-
-
Shimoda, K.1
van Deursen, J.2
Sangster, M.Y.3
Sarawar, S.R.4
Carson, R.T.5
Tripp, R.A.6
Chu, C.7
Quelle, F.W.8
Nosaka, T.9
Vignali, D.A.10
-
39
-
-
84923041629
-
Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine
-
Bando J.K., Liang H.E., Locksley R.M. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol 2015, 16:153-160.
-
(2015)
Nat Immunol
, vol.16
, pp. 153-160
-
-
Bando, J.K.1
Liang, H.E.2
Locksley, R.M.3
-
40
-
-
84941994329
-
Innate immunological function of TH2 cells in vivo
-
Guo L., Huang Y., Chen X., Hu-Li J., Urban J.F., Paul W.E. Innate immunological function of TH2 cells in vivo. Nat Immunol 2015, 16:1051-1059.
-
(2015)
Nat Immunol
, vol.16
, pp. 1051-1059
-
-
Guo, L.1
Huang, Y.2
Chen, X.3
Hu-Li, J.4
Urban, J.F.5
Paul, W.E.6
-
41
-
-
84882778526
-
Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production
-
Doherty T.A., Khorram N., Lund S., Mehta A.K., Croft M., Broide D.H. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 2013, 132:205-213.
-
(2013)
J Allergy Clin Immunol
, vol.132
, pp. 205-213
-
-
Doherty, T.A.1
Khorram, N.2
Lund, S.3
Mehta, A.K.4
Croft, M.5
Broide, D.H.6
-
42
-
-
84937618997
-
Interleukin-33 and interferon-gamma counter-regulate Group 2 innate lymphoid cell activation during immune perturbation
-
Molofsky A.B., Van Gool F., Liang H.E., Van Dyken S.J., Nussbaum J.C., Lee J., Bluestone J.A., Locksley R.M. Interleukin-33 and interferon-gamma counter-regulate Group 2 innate lymphoid cell activation during immune perturbation. Immunity 2015, 43:161-174.
-
(2015)
Immunity
, vol.43
, pp. 161-174
-
-
Molofsky, A.B.1
Van Gool, F.2
Liang, H.E.3
Van Dyken, S.J.4
Nussbaum, J.C.5
Lee, J.6
Bluestone, J.A.7
Locksley, R.M.8
-
43
-
-
84940527399
-
IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions
-
Monticelli L.A., Osborne L.C., Noti M., Tran S.V., Zaiss D.M., Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A 2015, 112:10762-10767.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 10762-10767
-
-
Monticelli, L.A.1
Osborne, L.C.2
Noti, M.3
Tran, S.V.4
Zaiss, D.M.5
Artis, D.6
-
44
-
-
84907370454
-
MHCII-mediated dialog between Group 2 innate lymphoid cells and CD4(+) T cells potentiates Type 2 immunity and promotes parasitic helminth expulsion
-
Oliphant C.J., Hwang Y.Y., Walker J.A., Salimi M., Wong S.H., Brewer J.M., Englezakis A., Barlow J.L., Hams E., Scanlon S.T., et al. MHCII-mediated dialog between Group 2 innate lymphoid cells and CD4(+) T cells potentiates Type 2 immunity and promotes parasitic helminth expulsion. Immunity 2014, 41:283-295.
-
(2014)
Immunity
, vol.41
, pp. 283-295
-
-
Oliphant, C.J.1
Hwang, Y.Y.2
Walker, J.A.3
Salimi, M.4
Wong, S.H.5
Brewer, J.M.6
Englezakis, A.7
Barlow, J.L.8
Hams, E.9
Scanlon, S.T.10
-
45
-
-
77951817855
-
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
-
Neill D.R., Wong S.H., Bellosi A., Flynn R.J., Daly M., Langford T.K., Bucks C., Kane C.M., Fallon P.G., Pannell R., et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010, 464:1367-1370.
-
(2010)
Nature
, vol.464
, pp. 1367-1370
-
-
Neill, D.R.1
Wong, S.H.2
Bellosi, A.3
Flynn, R.J.4
Daly, M.5
Langford, T.K.6
Bucks, C.7
Kane, C.M.8
Fallon, P.G.9
Pannell, R.10
-
46
-
-
0030710079
-
Developing lymph nodes collect CD4+ CD3- LTb+ cells the can differentiate to APC, NK Cells, and follicular cells but not T or B cells
-
Mebius R.E., Rennert R., Weissman I.L. Developing lymph nodes collect CD4+ CD3- LTb+ cells the can differentiate to APC, NK Cells, and follicular cells but not T or B cells. Immunity 1997, 7:493-504.
-
(1997)
Immunity
, vol.7
, pp. 493-504
-
-
Mebius, R.E.1
Rennert, R.2
Weissman, I.L.3
-
47
-
-
84894736115
-
Type 2 innate lymphoid cells drive CD4+ Th2 cell responses
-
Mirchandani A.S., Besnard A.-G., Yip E., Scott C., Bain C.C., Cerovic V., Salmond R.J., Liew F.Y. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J Immunol (Baltimore Md.: 1950) 2014.
-
(2014)
J Immunol (Baltimore Md.: 1950)
-
-
Mirchandani, A.S.1
Besnard, A.-G.2
Yip, E.3
Scott, C.4
Bain, C.C.5
Cerovic, V.6
Salmond, R.J.7
Liew, F.Y.8
-
48
-
-
84922237105
-
Group 2 innate lymphoid cells in the regulation of immune responses
-
Roediger B., Weninger W. Group 2 innate lymphoid cells in the regulation of immune responses. Adv Immunol 2015, 125:111-154.
-
(2015)
Adv Immunol
, vol.125
, pp. 111-154
-
-
Roediger, B.1
Weninger, W.2
-
49
-
-
84962027533
-
Innate lymphoid cells in cancer
-
Vallentin B., Barlogis V., Piperoglou C., Cypowyj S., Zucchini N., Chene M., Navarro F., Farnarier C., Vivier E., Vely F. Innate lymphoid cells in cancer. Cancer Immunol Res 2015, 3:1109-1114.
-
(2015)
Cancer Immunol Res
, vol.3
, pp. 1109-1114
-
-
Vallentin, B.1
Barlogis, V.2
Piperoglou, C.3
Cypowyj, S.4
Zucchini, N.5
Chene, M.6
Navarro, F.7
Farnarier, C.8
Vivier, E.9
Vely, F.10
-
50
-
-
84875445419
-
The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway
-
Rankin L.C., Groom J.R., Chopin M., Herold M.J., Walker J.A., Mielke L.A., McKenzie A.N., Carotta S., Nutt S.L., Belz G.T. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol 2013, 14:389-395.
-
(2013)
Nat Immunol
, vol.14
, pp. 389-395
-
-
Rankin, L.C.1
Groom, J.R.2
Chopin, M.3
Herold, M.J.4
Walker, J.A.5
Mielke, L.A.6
McKenzie, A.N.7
Carotta, S.8
Nutt, S.L.9
Belz, G.T.10
-
51
-
-
85018216832
-
Differentiation and function of group 3 innate lymphoid cells, from embryo to adult
-
van de Pavert S.A., Vivier E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int Immunol 2015.
-
(2015)
Int Immunol
-
-
van de Pavert, S.A.1
Vivier, E.2
-
52
-
-
57449118239
-
Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
-
Satoh-Takayama N., Vosshenrich C.A., Lesjean-Pottier S., Sawa S., Lochner M., Rattis F., Mention J.J., Thiam K., Cerf-Bensussan N., Mandelboim O., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
-
(2008)
Immunity
, vol.29
, pp. 958-970
-
-
Satoh-Takayama, N.1
Vosshenrich, C.A.2
Lesjean-Pottier, S.3
Sawa, S.4
Lochner, M.5
Rattis, F.6
Mention, J.J.7
Thiam, K.8
Cerf-Bensussan, N.9
Mandelboim, O.10
-
53
-
-
59649099774
-
A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
-
Cella M., Fuchs A., Vermi W., Facchetti F., Otero K., Lennerz J.K., Doherty J.M., Mills J.C., Colonna M. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009, 457:722-725.
-
(2009)
Nature
, vol.457
, pp. 722-725
-
-
Cella, M.1
Fuchs, A.2
Vermi, W.3
Facchetti, F.4
Otero, K.5
Lennerz, J.K.6
Doherty, J.M.7
Mills, J.C.8
Colonna, M.9
-
54
-
-
84912074927
-
The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells
-
Satoh-Takayama N., Serafini N., Verrier T., Rekiki A., Renauld J.C., Frankel G., Di Santo J.P. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. Immunity 2014, 41:776-788.
-
(2014)
Immunity
, vol.41
, pp. 776-788
-
-
Satoh-Takayama, N.1
Serafini, N.2
Verrier, T.3
Rekiki, A.4
Renauld, J.C.5
Frankel, G.6
Di Santo, J.P.7
-
55
-
-
84952869199
-
Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation
-
Song C., Lee J.S., Gilfillan S., Robinette M.L., Newberry R.D., Stappenbeck T.S., Mack M., Cella M., Colonna M. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J Exp Med 2015, 212:1869-1882.
-
(2015)
J Exp Med
, vol.212
, pp. 1869-1882
-
-
Song, C.1
Lee, J.S.2
Gilfillan, S.3
Robinette, M.L.4
Newberry, R.D.5
Stappenbeck, T.S.6
Mack, M.7
Cella, M.8
Colonna, M.9
-
56
-
-
84955195285
-
Complementarity and redundancy of IL-22-producing innate lymphoid cells
-
(In press)
-
Rankin L.C., Girard-Madoux M.J.H., Seillet C., Mielke L.A., Kerdiles Y., Fenis A., Wieduwild E., Putoczki T., Mondot S., Lantz O., et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 2015, (In press).
-
(2015)
Nat Immunol
-
-
Rankin, L.C.1
Girard-Madoux, M.J.H.2
Seillet, C.3
Mielke, L.A.4
Kerdiles, Y.5
Fenis, A.6
Wieduwild, E.7
Putoczki, T.8
Mondot, S.9
Lantz, O.10
-
57
-
-
84870876967
-
Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria
-
Basu R., O'Quinn D.B., Silberger D.J., Schoeb T.R., Fouser L., Ouyang W., Hatton R.D., Weaver C.T. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 2012, 37:1061-1075.
-
(2012)
Immunity
, vol.37
, pp. 1061-1075
-
-
Basu, R.1
O'Quinn, D.B.2
Silberger, D.J.3
Schoeb, T.R.4
Fouser, L.5
Ouyang, W.6
Hatton, R.D.7
Weaver, C.T.8
-
58
-
-
40049083827
-
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
-
Zheng Y., Valdez P.A., Danilenko D.M., Hu Y., Sa S.M., Gong Q., Abbas A.R., Modrusan Z., Ghilardi N., de Sauvage F.J., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008, 14:282-289.
-
(2008)
Nat Med
, vol.14
, pp. 282-289
-
-
Zheng, Y.1
Valdez, P.A.2
Danilenko, D.M.3
Hu, Y.4
Sa, S.M.5
Gong, Q.6
Abbas, A.R.7
Modrusan, Z.8
Ghilardi, N.9
de Sauvage, F.J.10
-
59
-
-
84861989207
-
Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
-
Sonnenberg G.F., Monticelli L.A., Alenghat T., Fung T.C., Hutnick N.A., Kunisawa J., Shibata N., Grunberg S., Sinha R., Zahm A.M., et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012, 336:1321-1325.
-
(2012)
Science
, vol.336
, pp. 1321-1325
-
-
Sonnenberg, G.F.1
Monticelli, L.A.2
Alenghat, T.3
Fung, T.C.4
Hutnick, N.A.5
Kunisawa, J.6
Shibata, N.7
Grunberg, S.8
Sinha, R.9
Zahm, A.M.10
-
60
-
-
84892482473
-
Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection
-
Guo X., Qiu J., Tu T., Yang X., Deng L., Anders R.A., Zhou L., Fu Y.X. Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection. Immunity 2014, 40:25-39.
-
(2014)
Immunity
, vol.40
, pp. 25-39
-
-
Guo, X.1
Qiu, J.2
Tu, T.3
Yang, X.4
Deng, L.5
Anders, R.A.6
Zhou, L.7
Fu, Y.X.8
-
61
-
-
84908120294
-
IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection
-
Ahlfors H., Morrison P.J., Duarte J.H., Li Y., Biro J., Tolaini M., Di Meglio P., Potocnik A.J., Stockinger B. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J Immunol 2014, 193:4602-4613.
-
(2014)
J Immunol
, vol.193
, pp. 4602-4613
-
-
Ahlfors, H.1
Morrison, P.J.2
Duarte, J.H.3
Li, Y.4
Biro, J.5
Tolaini, M.6
Di Meglio, P.7
Potocnik, A.J.8
Stockinger, B.9
-
62
-
-
84930663466
-
Immune tolerance, Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells
-
Hepworth M.R., Fung T.C., Masur S.H., Kelsen J.R., McConnell F.M., Dubrot J., Withers D.R., Hugues S., Farrar M.A., Reith W., et al. Immune tolerance, Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science 2015, 348:1031-1035.
-
(2015)
Science
, vol.348
, pp. 1031-1035
-
-
Hepworth, M.R.1
Fung, T.C.2
Masur, S.H.3
Kelsen, J.R.4
McConnell, F.M.5
Dubrot, J.6
Withers, D.R.7
Hugues, S.8
Farrar, M.A.9
Reith, W.10
-
63
-
-
84878737123
-
Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
-
Hepworth M.R., Monticelli L.A., Fung T.C., Ziegler C.G., Grunberg S., Sinha R., Mantegazza A.R., Ma H.L., Crawford A., Angelosanto J.M., et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013, 498:113-117.
-
(2013)
Nature
, vol.498
, pp. 113-117
-
-
Hepworth, M.R.1
Monticelli, L.A.2
Fung, T.C.3
Ziegler, C.G.4
Grunberg, S.5
Sinha, R.6
Mantegazza, A.R.7
Ma, H.L.8
Crawford, A.9
Angelosanto, J.M.10
-
64
-
-
84907228164
-
Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses
-
von Burg N., Chappaz S., Baerenwaldt A., Horvath E., Bose Dasgupta S., Ashok D., Pieters J., Tacchini-Cottier F., Rolink A., Acha-Orbea H., et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc Natl Acad Sci U S A 2014, 111:12835-12840.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 12835-12840
-
-
von Burg, N.1
Chappaz, S.2
Baerenwaldt, A.3
Horvath, E.4
Bose Dasgupta, S.5
Ashok, D.6
Pieters, J.7
Tacchini-Cottier, F.8
Rolink, A.9
Acha-Orbea, H.10
-
65
-
-
84943638660
-
An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
-
Sano T., Huang W., Hall J.A., Yang Y., Chen A., Gavzy S.J., Lee J.Y., Ziel J.W., Miraldi E.R., Domingos A.I. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 2015.
-
(2015)
Cell
-
-
Sano, T.1
Huang, W.2
Hall, J.A.3
Yang, Y.4
Chen, A.5
Gavzy, S.J.6
Lee, J.Y.7
Ziel, J.W.8
Miraldi, E.R.9
Domingos A.I.ET, AL10
-
66
-
-
84951332865
-
Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage
-
Aparicio-Domingo P., Romera-Hernandez M., Karrich J.J., Cornelissen F., Papazian N., Lindenbergh-Kortleve D.J., Butler J.A., Boon L., Coles M.C., Samsom J.N., et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med 2015, 212:1783-1791.
-
(2015)
J Exp Med
, vol.212
, pp. 1783-1791
-
-
Aparicio-Domingo, P.1
Romera-Hernandez, M.2
Karrich, J.J.3
Cornelissen, F.4
Papazian, N.5
Lindenbergh-Kortleve, D.J.6
Butler, J.A.7
Boon, L.8
Coles, M.C.9
Samsom, J.N.10
-
67
-
-
84907208430
-
Innate lymphoid cells regulate intestinal epithelial cell glycosylation
-
Goto Y., Obata T., Kunisawa J., Sato S., Ivanov I.I., Lamichhane A., Takeyama N., Kamioka M., Sakamoto M., Matsuki T., et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014, 345:1254009.
-
(2014)
Science
, vol.345
, pp. 1254009
-
-
Goto, Y.1
Obata, T.2
Kunisawa, J.3
Sato, S.4
Ivanov, I.I.5
Lamichhane, A.6
Takeyama, N.7
Kamioka, M.8
Sakamoto, M.9
Matsuki, T.10
-
68
-
-
84922746950
-
IL-23 activates innate lymphoid cells to promote neonatal intestinal pathology
-
Chen L., He Z., Slinger E., Bongers G., Lapenda T.L., Pacer M.E., Jiao J., Beltrao M.F., Soto A.J., Harpaz N., et al. IL-23 activates innate lymphoid cells to promote neonatal intestinal pathology. Mucosal Immunol 2015, 8:390-402.
-
(2015)
Mucosal Immunol
, vol.8
, pp. 390-402
-
-
Chen, L.1
He, Z.2
Slinger, E.3
Bongers, G.4
Lapenda, T.L.5
Pacer, M.E.6
Jiao, J.7
Beltrao, M.F.8
Soto, A.J.9
Harpaz, N.10
-
69
-
-
77951878587
-
Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
-
Buonocore S., Ahern P.P., Uhlig H.H., Ivanov I.I., Littman D.R., Maloy K.J., Powrie F. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010, 464:1371-1375.
-
(2010)
Nature
, vol.464
, pp. 1371-1375
-
-
Buonocore, S.1
Ahern, P.P.2
Uhlig, H.H.3
Ivanov, I.I.4
Littman, D.R.5
Maloy, K.J.6
Powrie, F.7
-
70
-
-
84897053496
-
Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
-
Mortha A., Chudnovskiy A., Hashimoto D., Bogunovic M., Spencer S.P., Belkaid Y., Merad M. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014, 343:1249288.
-
(2014)
Science
, vol.343
, pp. 1249288
-
-
Mortha, A.1
Chudnovskiy, A.2
Hashimoto, D.3
Bogunovic, M.4
Spencer, S.P.5
Belkaid, Y.6
Merad, M.7
-
71
-
-
84936890053
-
Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation
-
e415
-
Powell N., Lo J.W., Biancheri P., Vossenkamper A., Pantazi E., Walker A.W., Stolarczyk E., Ammoscato F., Goldberg R., Scott P., et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation. Gastroenterology 2015, 149. 456-467 e415.
-
(2015)
Gastroenterology
, vol.149
, pp. 456-467
-
-
Powell, N.1
Lo, J.W.2
Biancheri, P.3
Vossenkamper, A.4
Pantazi, E.5
Walker, A.W.6
Stolarczyk, E.7
Ammoscato, F.8
Goldberg, R.9
Scott, P.10
-
72
-
-
84905118660
-
CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22
-
Longman R.S., Diehl G.E., Victorio D.A., Huh J.R., Galan C., Miraldi E.R., Swaminath A., Bonneau R., Scherl E.J., Littman D.R. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 2014, 211:1571-1583.
-
(2014)
J Exp Med
, vol.211
, pp. 1571-1583
-
-
Longman, R.S.1
Diehl, G.E.2
Victorio, D.A.3
Huh, J.R.4
Galan, C.5
Miraldi, E.R.6
Swaminath, A.7
Bonneau, R.8
Scherl, E.J.9
Littman, D.R.10
-
73
-
-
84939166338
-
Intestinal macrophages arising from CCR2(+) monocytes control pathogen infection by activating innate lymphoid cells
-
Seo S.U., Kuffa P., Kitamoto S., Nagao-Kitamoto H., Rousseau J., Kim Y.G., Nunez G., Kamada N. Intestinal macrophages arising from CCR2(+) monocytes control pathogen infection by activating innate lymphoid cells. Nat Commun 2015, 6:8010.
-
(2015)
Nat Commun
, vol.6
, pp. 8010
-
-
Seo, S.U.1
Kuffa, P.2
Kitamoto, S.3
Nagao-Kitamoto, H.4
Rousseau, J.5
Kim, Y.G.6
Nunez, G.7
Kamada, N.8
-
74
-
-
79960641541
-
Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat- lymphoid cells
-
Reynders A., Yessaad N., Vu Manh T.P., Dalod M., Fenis A., Aubry C., Nikitas G., Escaliere B., Renauld J.C., Dussurget O., et al. Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat- lymphoid cells. EMBO J 2011, 30:2934-2947.
-
(2011)
EMBO J
, vol.30
, pp. 2934-2947
-
-
Reynders, A.1
Yessaad, N.2
Vu Manh, T.P.3
Dalod, M.4
Fenis, A.5
Aubry, C.6
Nikitas, G.7
Escaliere, B.8
Renauld, J.C.9
Dussurget, O.10
-
75
-
-
84899850707
-
Phenotypes of Th lineages generated by the commonly used activation with anti-CD3/CD28 antibodies differ from those generated by the physiological activation with the specific antigen
-
Tan C., Wei L., Vistica B.P., Shi G., Wawrousek E.F., Gery I. Phenotypes of Th lineages generated by the commonly used activation with anti-CD3/CD28 antibodies differ from those generated by the physiological activation with the specific antigen. Cell Mol Immunol 2014, 11:305-313.
-
(2014)
Cell Mol Immunol
, vol.11
, pp. 305-313
-
-
Tan, C.1
Wei, L.2
Vistica, B.P.3
Shi, G.4
Wawrousek, E.F.5
Gery, I.6
-
76
-
-
85027948313
-
Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus
-
Monticelli L.A., Sonnenberg G.F., Abt M.C., Alenghat T., Ziegler C.G., Doering T.A., Angelosanto J.M., Laidlaw B.J., Yang C.Y., Sathaliyawala T., et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011, 12:1045-1054.
-
(2011)
Nat Immunol
, vol.12
, pp. 1045-1054
-
-
Monticelli, L.A.1
Sonnenberg, G.F.2
Abt, M.C.3
Alenghat, T.4
Ziegler, C.G.5
Doering, T.A.6
Angelosanto, J.M.7
Laidlaw, B.J.8
Yang, C.Y.9
Sathaliyawala, T.10
-
77
-
-
84893398719
-
Runx3-mediated transcriptional program in cytotoxic lymphocytes
-
Lotem J., Levanon D., Negreanu V., Leshkowitz D., Friedlander G., Groner Y. Runx3-mediated transcriptional program in cytotoxic lymphocytes. PLoS One 2013, 8:e80467.
-
(2013)
PLoS One
, vol.8
, pp. e80467
-
-
Lotem, J.1
Levanon, D.2
Negreanu, V.3
Leshkowitz, D.4
Friedlander, G.5
Groner, Y.6
-
78
-
-
44249093277
-
Expression analysis of G protein-coupled receptors in mouse macrophages
-
Lattin J.E., Schroder K., Su A.I., Walker J.R., Zhang J., Wiltshire T., Saijo K., Glass C.K., Hume D.A., Kellie S., et al. Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 2008, 4:5.
-
(2008)
Immunome Res
, vol.4
, pp. 5
-
-
Lattin, J.E.1
Schroder, K.2
Su, A.I.3
Walker, J.R.4
Zhang, J.5
Wiltshire, T.6
Saijo, K.7
Glass, C.K.8
Hume, D.A.9
Kellie, S.10
-
79
-
-
79956268072
-
Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells
-
e695
-
Konuma T., Nakamura S., Miyagi S., Negishi M., Chiba T., Oguro H., Yuan J., Mochizuki-Kashio M., Ichikawa H., Miyoshi H., et al. Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells. Exp Hematol 2011, 39. 697-709 e695.
-
(2011)
Exp Hematol
, vol.39
, pp. 697-709
-
-
Konuma, T.1
Nakamura, S.2
Miyagi, S.3
Negishi, M.4
Chiba, T.5
Oguro, H.6
Yuan, J.7
Mochizuki-Kashio, M.8
Ichikawa, H.9
Miyoshi, H.10
-
80
-
-
45749120843
-
Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling
-
Robbins S.H., Walzer T., Dembele D., Thibault C., Defays A., Bessou G., Xu H., Vivier E., Sellars M., Pierre P., et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 2008, 9:R17.
-
(2008)
Genome Biol
, vol.9
, pp. R17
-
-
Robbins, S.H.1
Walzer, T.2
Dembele, D.3
Thibault, C.4
Defays, A.5
Bessou, G.6
Xu, H.7
Vivier, E.8
Sellars, M.9
Pierre, P.10
-
81
-
-
75749122181
-
Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells
-
Moro K., Yamada T., Tanabe M., Takeuchi T., Ikawa T., Kawamoto H., Furusawa J., Ohtani M., Fujii H., Koyasu S. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010, 463:540-544.
-
(2010)
Nature
, vol.463
, pp. 540-544
-
-
Moro, K.1
Yamada, T.2
Tanabe, M.3
Takeuchi, T.4
Ikawa, T.5
Kawamoto, H.6
Furusawa, J.7
Ohtani, M.8
Fujii, H.9
Koyasu, S.10
-
82
-
-
84898736806
-
Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation
-
Lin C.C., Bradstreet T.R., Schwarzkopf E.A., Sim J., Carrero J.A., Chou C., Cook L.E., Egawa T., Taneja R., Murphy T.L., et al. Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nat Commun 2014, 5:3551.
-
(2014)
Nat Commun
, vol.5
, pp. 3551
-
-
Lin, C.C.1
Bradstreet, T.R.2
Schwarzkopf, E.A.3
Sim, J.4
Carrero, J.A.5
Chou, C.6
Cook, L.E.7
Egawa, T.8
Taneja, R.9
Murphy, T.L.10
-
83
-
-
34250200713
-
Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs
-
Fehniger T.A., Cai S.F., Cao X., Bredemeyer A.J., Presti R.M., French A.R., Ley T.J. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 2007, 26:798-811.
-
(2007)
Immunity
, vol.26
, pp. 798-811
-
-
Fehniger, T.A.1
Cai, S.F.2
Cao, X.3
Bredemeyer, A.J.4
Presti, R.M.5
French, A.R.6
Ley, T.J.7
-
84
-
-
79958042030
-
Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3
-
Horiuchi S., Onodera A., Hosokawa H., Watanabe Y., Tanaka T., Sugano S., Suzuki Y., Nakayama T. Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3. J Immunol 2011, 186:6378-6389.
-
(2011)
J Immunol
, vol.186
, pp. 6378-6389
-
-
Horiuchi, S.1
Onodera, A.2
Hosokawa, H.3
Watanabe, Y.4
Tanaka, T.5
Sugano, S.6
Suzuki, Y.7
Nakayama, T.8
-
85
-
-
84877799485
-
Intestinal Lin- c-Kit+ NKp46- CD4- population strongly produces IL-22 upon IL-1beta stimulation
-
Lee Y., Kumagai Y., Jang M.S., Kim J.H., Yang B.G., Lee E.J., Kim Y.M., Akira S., Jang M.H. Intestinal Lin- c-Kit+ NKp46- CD4- population strongly produces IL-22 upon IL-1beta stimulation. J Immunol 2013, 190:5296-5305.
-
(2013)
J Immunol
, vol.190
, pp. 5296-5305
-
-
Lee, Y.1
Kumagai, Y.2
Jang, M.S.3
Kim, J.H.4
Yang, B.G.5
Lee, E.J.6
Kim, Y.M.7
Akira, S.8
Jang, M.H.9
|