메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Intestinal macrophages arising from CCR2+ monocytes control pathogen infection by activating innate lymphoid cells

Author keywords

[No Author keywords available]

Indexed keywords

CASPASE 11; CHEMOKINE RECEPTOR CCR2; COLONY STIMULATING FACTOR 1; INTERLEUKIN 17; INTERLEUKIN 1BETA; INTERLEUKIN 22; INTERLEUKIN 23; INTERLEUKIN 6; CCR2 PROTEIN, MOUSE;

EID: 84939166338     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms9010     Document Type: Article
Times cited : (63)

References (57)
  • 1
    • 84901410158 scopus 로고    scopus 로고
    • Intestinal macrophages and dendritic cells: What's the difference?
    • Cerovic, V., Bain, C. C., Mowat, A. M. & Milling, S. W. Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol. 35, 270-277 (2014).
    • (2014) Trends Immunol , vol.35 , pp. 270-277
    • Cerovic, V.1    Bain, C.C.2    Mowat, A.M.3    Milling, S.W.4
  • 2
    • 79960513242 scopus 로고    scopus 로고
    • Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization
    • Denning, T. L. et al. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187, 733-747 (2011).
    • (2011) J. Immunol. , vol.187 , pp. 733-747
    • Denning, T.L.1
  • 3
    • 84856815290 scopus 로고    scopus 로고
    • Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon
    • Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139-155 (2012).
    • (2012) J. Exp. Med. , vol.209 , pp. 139-155
    • Rivollier, A.1    He, J.2    Kole, A.3    Valatas, V.4    Kelsall, B.L.5
  • 4
    • 34548764423 scopus 로고    scopus 로고
    • Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses
    • Denning, T. L.,Wang, Y. C., Patel, S. R.,Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8, 1086-1094 (2007).
    • (2007) Nat. Immunol. , vol.8 , pp. 1086-1094
    • Denning, T.L.1    Wang, Y.C.2    Patel, S.R.3    Williams, I.R.4    Pulendran, B.5
  • 5
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: Developmental pathways and tissue homeostasis
    • Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392-404 (2014).
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 6
    • 84876349699 scopus 로고    scopus 로고
    • Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors
    • Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6, 498-510 (2013).
    • (2013) Mucosal Immunol. , vol.6 , pp. 498-510
    • Bain, C.C.1
  • 7
    • 48749107414 scopus 로고    scopus 로고
    • Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii
    • Dunay, I. R. et al. Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29, 306-317 (2008).
    • (2008) Immunity , vol.29 , pp. 306-317
    • Dunay, I.R.1
  • 8
    • 77950263400 scopus 로고    scopus 로고
    • Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice
    • Dunay, I. R., Fuchs, A. & Sibley, L. D. Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infect. Immun. 78, 1564-1570 (2010).
    • (2010) Infect. Immun. , vol.78 , pp. 1564-1570
    • Dunay, I.R.1    Fuchs, A.2    Sibley, L.D.3
  • 9
    • 79956319462 scopus 로고    scopus 로고
    • The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes
    • Kim, Y. G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769-780 (2011).
    • (2011) Immunity , vol.34 , pp. 769-780
    • Kim, Y.G.1
  • 10
    • 0041322730 scopus 로고    scopus 로고
    • Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium
    • Simmons, C. P. et al. Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun. 71, 5077-5086 (2003).
    • (2003) Infect. Immun. , vol.71 , pp. 5077-5086
    • Simmons, C.P.1
  • 11
    • 78751706261 scopus 로고    scopus 로고
    • CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
    • Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122-134 (2011).
    • (2011) Immunity , vol.34 , pp. 122-134
    • Sonnenberg, G.F.1    Monticelli, L.A.2    Elloso, M.M.3    Fouser, L.A.4    Artis, D.5
  • 13
    • 84867807929 scopus 로고    scopus 로고
    • Innate lymphoid cell interactions with microbiota: Implications for intestinal health and disease
    • Sonnenberg, G. F. & Artis, D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 37, 601-610 (2012).
    • (2012) Immunity , vol.37 , pp. 601-610
    • Sonnenberg, G.F.1    Artis, D.2
  • 14
    • 59649099774 scopus 로고    scopus 로고
    • A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
    • Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722-725 (2009).
    • (2009) Nature , vol.457 , pp. 722-725
    • Cella, M.1
  • 15
    • 78650310810 scopus 로고    scopus 로고
    • The expanding family of innate lymphoid cells: Regulators and effectors of immunity and tissue remodeling
    • Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21-27 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 21-27
    • Spits, H.1    Di Santo, J.P.2
  • 16
    • 40049083827 scopus 로고    scopus 로고
    • Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
    • Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282-289 (2008).
    • (2008) Nat. Med. , vol.14 , pp. 282-289
    • Zheng, Y.1
  • 17
    • 84857444876 scopus 로고    scopus 로고
    • Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
    • Kinnebrew, M. A. et al. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276-287 (2012).
    • (2012) Immunity , vol.36 , pp. 276-287
    • Kinnebrew, M.A.1
  • 18
    • 84874082076 scopus 로고    scopus 로고
    • CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium
    • Manta, C. et al. CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol. 6, 177-188 (2013).
    • (2013) Mucosal Immunol. , vol.6 , pp. 177-188
    • Manta, C.1
  • 19
    • 79960500206 scopus 로고    scopus 로고
    • Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge
    • Tumanov, A. V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 44-53 (2011).
    • (2011) Cell Host Microbe , vol.10 , pp. 44-53
    • Tumanov, A.V.1
  • 20
    • 84905118660 scopus 로고    scopus 로고
    • CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22
    • Longman, R. S. et al. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571-1583 (2014).
    • (2014) J. Exp. Med. , vol.211 , pp. 1571-1583
    • Longman, R.S.1
  • 21
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311-317 (2006).
    • (2006) Nat. Immunol. , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 22
    • 71749100858 scopus 로고    scopus 로고
    • Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection
    • Hohl, T. M. et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6, 470-481 (2009).
    • (2009) Cell Host Microbe , vol.6 , pp. 470-481
    • Hohl, T.M.1
  • 23
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953-964 (2005).
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 24
    • 80355146868 scopus 로고    scopus 로고
    • Monocyte recruitment during infection and inflammation
    • Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762-774 (2011).
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 762-774
    • Shi, C.1    Pamer, E.G.2
  • 25
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71-82 (2003).
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Jung, S.2    Littman, D.R.3
  • 26
    • 33644912582 scopus 로고    scopus 로고
    • Development of peritoneal adhesions in macrophage depleted mice
    • Burnett, S. H. et al. Development of peritoneal adhesions in macrophage depleted mice. J. Surg. Res. 131, 296-301 (2006).
    • (2006) J. Surg. Res. , vol.131 , pp. 296-301
    • Burnett, S.H.1
  • 27
    • 79960641541 scopus 로고    scopus 로고
    • Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat-lymphoid cells
    • Reynders, A. et al. Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat-lymphoid cells. EMBO J. 30, 2934-2947 (2011).
    • (2011) EMBO J. , vol.30 , pp. 2934-2947
    • Reynders, A.1
  • 28
    • 33744464740 scopus 로고    scopus 로고
    • Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages
    • Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. 7, 576-582 (2006).
    • (2006) Nat. Immunol. , vol.7 , pp. 576-582
    • Franchi, L.1
  • 29
    • 84864600268 scopus 로고    scopus 로고
    • TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria
    • Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606-619 (2012).
    • (2012) Cell , vol.150 , pp. 606-619
    • Rathinam, V.A.1
  • 30
    • 45749107055 scopus 로고    scopus 로고
    • Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis
    • Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Invest. 118, 2269-2280 (2008).
    • (2008) J. Clin. Invest. , vol.118 , pp. 2269-2280
    • Kamada, N.1
  • 31
    • 84905439631 scopus 로고    scopus 로고
    • Cross-talk between RORgt+ innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn's disease
    • Mizuno, S. et al. Cross-talk between RORgt+ innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn's disease. Inflamm. Bowel. Dis. 20, 1426-1434 (2014).
    • (2014) Inflamm. Bowel. Dis. , vol.20 , pp. 1426-1434
    • Mizuno, S.1
  • 32
    • 84870900504 scopus 로고    scopus 로고
    • Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
    • Zigmond, E. et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076-1090 (2012).
    • (2012) Immunity , vol.37 , pp. 1076-1090
    • Zigmond, E.1
  • 33
    • 84859911615 scopus 로고    scopus 로고
    • NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense
    • Franchi, L. et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449-456 (2012).
    • (2012) Nat. Immunol. , vol.13 , pp. 449-456
    • Franchi, L.1
  • 34
    • 84866158239 scopus 로고    scopus 로고
    • Protective role of commensals against Clostridium difficile infection via an IL-1beta-mediated positive-feedback loop
    • Hasegawa, M. et al. Protective role of commensals against Clostridium difficile infection via an IL-1beta-mediated positive-feedback loop. J. Immunol. 189, 3085-3091 (2012).
    • (2012) J. Immunol. , vol.189 , pp. 3085-3091
    • Hasegawa, M.1
  • 35
    • 84863151799 scopus 로고    scopus 로고
    • Microbiota-induced IL-1beta but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
    • Shaw, M. H., Kamada, N., Kim, Y. G. & Nunez, G. Microbiota-induced IL-1beta but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209, 251-258 (2012).
    • (2012) J. Exp. Med. , vol.209 , pp. 251-258
    • Shaw, M.H.1    Kamada, N.2    Kim, Y.G.3    Nunez, G.4
  • 36
    • 79952986650 scopus 로고    scopus 로고
    • RORgt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
    • Sawa, S. et al. RORgt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320-326 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 320-326
    • Sawa, S.1
  • 37
    • 84870876967 scopus 로고    scopus 로고
    • Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria
    • Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37, 1061-1075 (2012).
    • (2012) Immunity , vol.37 , pp. 1061-1075
    • Basu, R.1
  • 38
    • 84873729246 scopus 로고    scopus 로고
    • A T-bet gradient controls the fate and function of CCR6-RORgt+ innate lymphoid cells
    • Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6-RORgt+ innate lymphoid cells. Nature 494, 261-265 (2013).
    • (2013) Nature , vol.494 , pp. 261-265
    • Klose, C.S.1
  • 39
    • 77956190936 scopus 로고    scopus 로고
    • Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease
    • Takayama, T. et al. Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology 139, 882-892 (2010).
    • (2010) Gastroenterology , vol.139 , pp. 882-892
    • Takayama, T.1
  • 40
    • 67650474246 scopus 로고    scopus 로고
    • STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing
    • Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465-1472 (2009).
    • (2009) J. Exp. Med. , vol.206 , pp. 1465-1472
    • Pickert, G.1
  • 41
    • 0042324629 scopus 로고    scopus 로고
    • Stress-induced disruption of colonic epithelial barrier: Role of interferon-gamma and myosin light chain kinase in mice
    • Ferrier, L. et al. Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology 125, 795-804 (2003).
    • (2003) Gastroenterology , vol.125 , pp. 795-804
    • Ferrier, L.1
  • 42
    • 13244298599 scopus 로고    scopus 로고
    • Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression
    • Wang, F. et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166, 409-419 (2005).
    • (2005) Am. J. Pathol. , vol.166 , pp. 409-419
    • Wang, F.1
  • 43
    • 80855127745 scopus 로고    scopus 로고
    • Neutrophils produce interleukin 17A (IL-17A) in a dectin-1-and IL-23-dependent manner during invasive fungal infection
    • Werner, J. L. et al. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1-and IL-23-dependent manner during invasive fungal infection. Infect. Immun. 79, 3966-3977 (2011).
    • (2011) Infect. Immun. , vol.79 , pp. 3966-3977
    • Werner, J.L.1
  • 44
    • 74949108768 scopus 로고    scopus 로고
    • IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury
    • Li, L. et al. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120, 331-342 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 331-342
    • Li, L.1
  • 45
    • 84892827750 scopus 로고    scopus 로고
    • Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgt and dectin-2
    • Taylor, P. R. et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgt and dectin-2. Nat. Immunol. 15, 143-151 (2014).
    • (2014) Nat. Immunol. , vol.15 , pp. 143-151
    • Taylor, P.R.1
  • 46
    • 84866362664 scopus 로고    scopus 로고
    • IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells
    • Coccia, M. et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J. Exp. Med. 209, 1595-1609 (2012).
    • (2012) J. Exp. Med. , vol.209 , pp. 1595-1609
    • Coccia, M.1
  • 47
    • 80455176839 scopus 로고    scopus 로고
    • Non-canonical inflammasome activation targets caspase-11
    • Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121 (2011).
    • (2011) Nature , vol.479 , pp. 117-121
    • Kayagaki, N.1
  • 48
    • 84867241369 scopus 로고    scopus 로고
    • Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein-and Nlrp3 inflammasome-mediated host defense against enteropathogens
    • Gurung, P. et al. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein-and Nlrp3 inflammasome-mediated host defense against enteropathogens. J. Biol. Chem. 287, 34474-34483 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 34474-34483
    • Gurung, P.1
  • 49
    • 84911992879 scopus 로고    scopus 로고
    • Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens
    • Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249-256 (2014).
    • (2014) Cell Host Microbe , vol.16 , pp. 249-256
    • Knodler, L.A.1
  • 50
    • 84908160928 scopus 로고    scopus 로고
    • Caspase-11 is expressed in the colonic mucosa and protects against dextran sodium sulfate-induced colitis
    • Demon, D. et al. Caspase-11 is expressed in the colonic mucosa and protects against dextran sodium sulfate-induced colitis. Mucosal Immunol. 7, 1480-1491 (2014).
    • (2014) Mucosal Immunol. , vol.7 , pp. 1480-1491
    • Demon, D.1
  • 51
    • 84921486975 scopus 로고    scopus 로고
    • Protective role for caspase-11 during acute experimental murine colitis
    • Oficjalska, K. et al. Protective role for caspase-11 during acute experimental murine colitis. J. Immunol. 194, 1252-1260 (2015).
    • (2015) J. Immunol. , vol.194 , pp. 1252-1260
    • Oficjalska, K.1
  • 52
    • 84921464234 scopus 로고    scopus 로고
    • Caspase-11 attenuates gastrointestinal inflammation and experimental colitis pathogenesis
    • Williams, T. M. et al. Caspase-11 attenuates gastrointestinal inflammation and experimental colitis pathogenesis. Am. J. Physiol. Gastrointest. Liver. Physiol. 308, G139-G150 (2015).
    • (2015) Am. J. Physiol. Gastrointest. Liver. Physiol. , vol.308 , pp. G139-G150
    • Williams, T.M.1
  • 53
    • 84907584408 scopus 로고    scopus 로고
    • Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection
    • Lupfer, C. R. et al. Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS. Pathog. 10, e1004410 (2014).
    • (2014) PLoS. Pathog. , vol.10
    • Lupfer, C.R.1
  • 54
    • 84897053496 scopus 로고    scopus 로고
    • Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
    • Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).
    • (2014) Science , vol.343 , pp. 1249288
    • Mortha, A.1
  • 55
    • 84928175356 scopus 로고    scopus 로고
    • Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury
    • Seo, S. U. et al. Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42, 744-755 (2015).
    • (2015) Immunity , vol.42 , pp. 744-755
    • Seo, S.U.1
  • 56
    • 12144289554 scopus 로고    scopus 로고
    • Dissecting virulence: Systematic and functional analyses of a pathogenicity island
    • Deng, W. et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc. Natl Acad. Sci. USA 101, 3597-3602 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 3597-3602
    • Deng, W.1
  • 57
    • 27744437941 scopus 로고    scopus 로고
    • Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria
    • Kamada, N. et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J. Immunol. 175, 6900-6908 (2005).
    • (2005) J. Immunol. , vol.175 , pp. 6900-6908
    • Kamada, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.