-
1
-
-
0042575188
-
Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms
-
S.C. Pei, and J.J. Ding Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms J Opt Soc Am A 20 3 2003 522 532
-
(2003)
J Opt Soc Am A
, vol.20
, Issue.3
, pp. 522-532
-
-
Pei, S.C.1
Ding, J.J.2
-
2
-
-
34547107598
-
Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters
-
S.C. Pei, and J.J. Ding Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters IEEE Trans Circuits Syst I 54 7 2007 1599 1611
-
(2007)
IEEE Trans Circuits Syst i
, vol.54
, Issue.7
, pp. 1599-1611
-
-
Pei, S.C.1
Ding, J.J.2
-
6
-
-
19944379483
-
Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms
-
B.M. Hennelly, and J.T. Sheridan Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms J Opt Soc Am A 22 5 2005 917 927
-
(2005)
J Opt Soc Am A
, vol.22
, Issue.5
, pp. 917-927
-
-
Hennelly, B.M.1
Sheridan, J.T.2
-
7
-
-
34047120799
-
A discrete fractional Gabor expansion for multi-component signals
-
A. Akan, and E. Onen A discrete fractional Gabor expansion for multi-component signals Int J Electron Commun 61 5 2007 279 285
-
(2007)
Int J Electron Commun
, vol.61
, Issue.5
, pp. 279-285
-
-
Akan, A.1
Onen, E.2
-
8
-
-
0035424885
-
Relations between fractional operations and time-frequency distributions, and their applications
-
S.C. Pei, and J.J. Ding Relations between fractional operations and time-frequency distributions, and their applications IEEE Trans Signal Process 49 8 2001 1638 1655
-
(2001)
IEEE Trans Signal Process
, vol.49
, Issue.8
, pp. 1638-1655
-
-
Pei, S.C.1
Ding, J.J.2
-
9
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
L.B. Almeida The fractional Fourier transform and time-frequency representations IEEE Trans Signal Process 42 11 1994 3084 3091
-
(1994)
IEEE Trans Signal Process
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.B.1
-
12
-
-
84861724344
-
On convolution and product theorems for FRFT
-
A.K. Singh, and R. Saxena On convolution and product theorems for FRFT Wirel Pers Commun 65 01 2012 189 201
-
(2012)
Wirel Pers Commun
, vol.65
, Issue.1
, pp. 189-201
-
-
Singh, A.K.1
Saxena, R.2
-
13
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms
-
H.M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms J Opt Soc Am A 11 2 1994 547 559
-
(1994)
J Opt Soc Am A
, vol.11
, Issue.2
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
14
-
-
0035340022
-
Fractional convolution and correlation via operator methods and application to detection of linear FM signals
-
O. Akay, and G.F. Boudreaux-Bartels Fractional convolution and correlation via operator methods and application to detection of linear FM signals IEEE Trans Signal Process 49 5 2001 979 993
-
(2001)
IEEE Trans Signal Process
, vol.49
, Issue.5
, pp. 979-993
-
-
Akay, O.1
Boudreaux-Bartels, G.F.2
-
15
-
-
77957697766
-
Optical fractional correlation: Experimental results
-
D. Mendlovic, Y. Bitran, R.G. Dorsch, and A.W. Lohmann Optical fractional correlation: experimental results J Opt Soc Am A 12 8 1995 1665 1670
-
(1995)
J Opt Soc Am A
, vol.12
, Issue.8
, pp. 1665-1670
-
-
Mendlovic, D.1
Bitran, Y.2
Dorsch, R.G.3
Lohmann, A.W.4
-
17
-
-
76749102797
-
Fractional convolution, fractional correlation and their translation invariance properties
-
R. Torres, P. Pellat-Finet, and Y. Torres Fractional convolution, fractional correlation and their translation invariance properties Signal Process 90 6 2010 1976 1984
-
(2010)
Signal Process
, vol.90
, Issue.6
, pp. 1976-1984
-
-
Torres, R.1
Pellat-Finet, P.2
Torres, Y.3
-
18
-
-
0015909910
-
Convolution and correlation algebras
-
A. Borsellino, and T. Poggio Convolution and correlation algebras Kybernetik 13 2 1973 113 122
-
(1973)
Kybernetik
, vol.13
, Issue.2
, pp. 113-122
-
-
Borsellino, A.1
Poggio, T.2
-
19
-
-
36849112629
-
Linear canonical transformations and their unitary representations
-
M. Moshinsky, and C. Quesne Linear canonical transformations and their unitary representations J Math Phys 12 1971 1772 1783
-
(1971)
J Math Phys
, vol.12
, pp. 1772-1783
-
-
Moshinsky, M.1
Quesne, C.2
-
20
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
L. Almeida Product and convolution theorems for the fractional Fourier transform IEEE Signal Process Lett 4 1 1997 15 17
-
(1997)
IEEE Signal Process Lett
, vol.4
, Issue.1
, pp. 15-17
-
-
Almeida, L.1
-
21
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
A. Zayed A convolution and product theorem for the fractional Fourier transform IEEE Signal Process Lett 5 4 1998 101 103
-
(1998)
IEEE Signal Process Lett
, vol.5
, Issue.4
, pp. 101-103
-
-
Zayed, A.1
-
22
-
-
33749469804
-
Convolution theorem for the linear canonical transform and their applications
-
B. Deng, R. Tao, and Y. Wang Convolution theorem for the linear canonical transform and their applications Sci China Ser F: Inf Sci 49 5 2006 592 603
-
(2006)
Sci China ser F: Inf Sci
, vol.49
, Issue.5
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
23
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
D. Wei, Q. Ran, Y. Li, J. Ma, and L. Tan A convolution and product theorem for the linear canonical transform IEEE Signal Process Lett 16 10 2009 853 856
-
(2009)
IEEE Signal Process Lett
, vol.16
, Issue.10
, pp. 853-856
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
Ma, J.4
Tan, L.5
-
24
-
-
84863077201
-
A convolution and correlation theorem for the linear canonical transform and its application
-
D. Wei, Q. Ran, and Y.-M. Li A convolution and correlation theorem for the linear canonical transform and its application Circuits Syst Signal Process 31 1 2012 301 312
-
(2012)
Circuits Syst Signal Process
, vol.31
, Issue.1
, pp. 301-312
-
-
Wei, D.1
Ran, Q.2
Li, Y.-M.3
-
25
-
-
80052949882
-
Multichannel sampling expansion in the linear canonical transform domain and its application to superresolution
-
D. Wei, Q. Ran, and Y.-M. Li Multichannel sampling expansion in the linear canonical transform domain and its application to superresolution Opt Commun 284 23 2011 5424 5429
-
(2011)
Opt Commun
, vol.284
, Issue.23
, pp. 5424-5429
-
-
Wei, D.1
Ran, Q.2
Li, Y.-M.3
-
26
-
-
84894272411
-
Convolution, correlation, and sampling theorems for the offset linear canonical transform
-
Q. Xiang, and K. Qin Convolution, correlation, and sampling theorems for the offset linear canonical transform Signal Image Video Process 8 3 2014 433 442
-
(2014)
Signal Image Video Process
, vol.8
, Issue.3
, pp. 433-442
-
-
Xiang, Q.1
Qin, K.2
-
27
-
-
84863625158
-
New convolution theorem for the linear canonical transform and its translation invariance property
-
D. Wei, Q. Ran, and Y. Li New convolution theorem for the linear canonical transform and its translation invariance property Optik - Int J Light Electron Opt 123 16 2012 1478 1481
-
(2012)
Optik - Int J Light Electron Opt
, vol.123
, Issue.16
, pp. 1478-1481
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
-
28
-
-
77956997558
-
Multichannel sampling and reconstruction of bandlimited signals in fractional Fourier domain
-
J. Shi, Y. Chi, and N. Zhang Multichannel sampling and reconstruction of bandlimited signals in fractional Fourier domain IEEE Signal Process Lett 17 11 2010 909 912
-
(2010)
IEEE Signal Process Lett
, vol.17
, Issue.11
, pp. 909-912
-
-
Shi, J.1
Chi, Y.2
Zhang, N.3
-
29
-
-
84867536084
-
Sampling and reconstruction of signals in function spaces associated with the linear canonical transform
-
J. Shi, X. Liu, X. Sha, and N. Zhang Sampling and reconstruction of signals in function spaces associated with the linear canonical transform IEEE Trans Signal Process 60 11 2012 6041 6047
-
(2012)
IEEE Trans Signal Process
, vol.60
, Issue.11
, pp. 6041-6047
-
-
Shi, J.1
Liu, X.2
Sha, X.3
Zhang, N.4
-
30
-
-
84904641555
-
Generalized convolution and product theorems associated with linear canonical transform
-
J. Shi, X. Liu, and N. Zhang Generalized convolution and product theorems associated with linear canonical transform Signal, Image Video Process 8 5 2014 967 974
-
(2014)
Signal, Image Video Process
, vol.8
, Issue.5
, pp. 967-974
-
-
Shi, J.1
Liu, X.2
Zhang, N.3
-
31
-
-
84905973424
-
Generalized convolution theorem associated with fractional Fourier transform
-
J. Shi, X. Sha, X. Song, and N. Zhang Generalized convolution theorem associated with fractional Fourier transform Wirel Commun Mob Comput 14 13 2014 1340 1351
-
(2014)
Wirel Commun Mob Comput
, vol.14
, Issue.13
, pp. 1340-1351
-
-
Shi, J.1
Sha, X.2
Song, X.3
Zhang, N.4
-
34
-
-
84876071219
-
Multiplicative filtering in the fractional Fourier domain
-
D. Wei, and Q. Ran Multiplicative filtering in the fractional Fourier domain Signal Image Video Process 7 3 2013 575 580
-
(2013)
Signal Image Video Process
, vol.7
, Issue.3
, pp. 575-580
-
-
Wei, D.1
Ran, Q.2
-
35
-
-
84893807546
-
Modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics
-
N. Goel, and K. Singh Modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics Int J Appl Math Comput Sci 23 3 2013 685 695
-
(2013)
Int J Appl Math Comput Sci
, vol.23
, Issue.3
, pp. 685-695
-
-
Goel, N.1
Singh, K.2
-
36
-
-
84894288331
-
Modified correlation theorem for the linear canonical transform with representation transformation in quantum mechanics
-
N. Goel, and K. Singh Modified correlation theorem for the linear canonical transform with representation transformation in quantum mechanics Signal Image Video Process 08 02 2014 595 601
-
(2014)
Signal Image Video Process
, vol.8
, Issue.2
, pp. 595-601
-
-
Goel, N.1
Singh, K.2
-
37
-
-
84996490274
-
A two-channel perfect reconstruction filter bank associated with the linear canonical transform
-
S.S. Fan, B.Z. Li, and T.Z. Xu A two-channel perfect reconstruction filter bank associated with the linear canonical transform Int J Electron Lett 2 2 2014 72 82
-
(2014)
Int J Electron Lett
, vol.2
, Issue.2
, pp. 72-82
-
-
Fan, S.S.1
Li, B.Z.2
Xu, T.Z.3
|