-
1
-
-
77958407025
-
The fractional order Fourier transform and its application to quantum mechanics
-
Namias V. The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 25 (1980) 241-265
-
(1980)
J. Inst. Math. Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
3
-
-
0001147949
-
Fractional correlator with real-time control of the space invariant property
-
Zalevsky Z., Mendlovic D., and Caulfield J.H. Fractional correlator with real-time control of the space invariant property. Appl. Opt. 36 (1997) 2370-2375
-
(1997)
Appl. Opt.
, vol.36
, pp. 2370-2375
-
-
Zalevsky, Z.1
Mendlovic, D.2
Caulfield, J.H.3
-
5
-
-
0035340022
-
Fractional convolution and correlation via operator methods and application to detection of linear FM signals
-
Akay O., and Boudreaux-Bartels G.F. Fractional convolution and correlation via operator methods and application to detection of linear FM signals. IEEE Trans. Signal Process. 49 (2001) 979-993
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, pp. 979-993
-
-
Akay, O.1
Boudreaux-Bartels, G.F.2
-
6
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
Almeida L.B. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Process. Lett. 4 (1997) 15-17
-
(1997)
IEEE Signal Process. Lett.
, vol.4
, pp. 15-17
-
-
Almeida, L.B.1
-
9
-
-
33750119845
-
Sampling theorem for fractional bandlimited signals: a self-contained proof. Application to digital holography
-
Torres R., Pellat-Finet P., and Torres Y. Sampling theorem for fractional bandlimited signals: a self-contained proof. Application to digital holography. IEEE Signal Process. Lett. 13 (2006) 676-679
-
(2006)
IEEE Signal Process. Lett.
, vol.13
, pp. 676-679
-
-
Torres, R.1
Pellat-Finet, P.2
Torres, Y.3
-
10
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
Zayed A.I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 6 (1998) 101-103
-
(1998)
IEEE Signal Process. Lett.
, vol.6
, pp. 101-103
-
-
Zayed, A.I.1
-
11
-
-
77957689582
-
On Namias's fractional Fourier transform
-
McBride A.C., and Kerr F.H. On Namias's fractional Fourier transform. IMA J. Appl. Math. 39 (1987) 159-175
-
(1987)
IMA J. Appl. Math.
, vol.39
, pp. 159-175
-
-
McBride, A.C.1
Kerr, F.H.2
-
12
-
-
0019636663
-
Fresnel transform and sampling theorem
-
Gori F. Fresnel transform and sampling theorem. Opt. Commun. 39 (1981) 293-297
-
(1981)
Opt. Commun.
, vol.39
, pp. 293-297
-
-
Gori, F.1
-
13
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
Xia X.-G. On bandlimited signals with fractional Fourier transform. IEEE Signal Process. Lett. 3 (1996) 72-74
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, pp. 72-74
-
-
Xia, X.-G.1
-
14
-
-
0030413251
-
On the relationship between the Fourier and fractional Fourier transforms
-
Zayed A.I. On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Process. Lett. 3 (1996) 310-311
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, pp. 310-311
-
-
Zayed, A.I.1
-
15
-
-
0003733873
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
Cohen L. Time-Frequency Analysis (1995), Prentice-Hall, Englewood Cliffs, NJ
-
(1995)
Time-Frequency Analysis
-
-
Cohen, L.1
|