-
1
-
-
21344493264
-
Generalization of the fractional fourier transformation to an arbitrary linear lossless transformation: An operator approach
-
Abe, S. and Sheridan, J. (1994a). Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: An operator approach, Journal of Physics, A: Mathematical and General 27(12): 4179-4187.
-
(1994)
Journal of Physics, A: Mathematical and General
, vol.27
, Issue.12
, pp. 4179-4187
-
-
Abe, S.1
Sheridan, J.2
-
2
-
-
0028546432
-
Optical operations on wave functions as the abelian subgroups of the special affine fourier transformation
-
Abe, S. and Sheridan, J. (1994b). Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation, Optics Letters 19(22): 1801-1803.
-
(1994)
Optics Letters
, vol.19
, Issue.22
, pp. 1801-1803
-
-
Abe, S.1
Sheridan, J.2
-
3
-
-
0008319946
-
Powers of transfer matrices determined by means of eigenfunctions
-
Alieva, T. and Bastiaans, M. (1999). Powers of transfer matrices determined by means of eigenfunctions, Journal of Optical Society of America A 16(10): 2413-2418.
-
(1999)
Journal of Optical Society of America A
, vol.16
, Issue.10
, pp. 2413-2418
-
-
Alieva, T.1
Bastiaans, M.2
-
4
-
-
0028546458
-
The fractional fourier transform and time-frequency representations
-
Almeida, L. (1994). The fractional Fourier transform and time-frequency representations, IEEE Transactions on Signal Processing 42(11): 3084-3091.
-
(1994)
IEEE Transactions on Signal Processing
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.1
-
5
-
-
0030826059
-
Product and convolution theorems for the fractional fourier transform
-
Almeida, L. (1997). Product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters 4(1): 15-17.
-
(1997)
IEEE Signal Processing Letters
, vol.4
, Issue.1
, pp. 15-17
-
-
Almeida, L.1
-
6
-
-
0031079193
-
Optimal filters with linear canonical transformations
-
Barshan, B., Ozaktas, H. and Kutey, M. (1997). Optimal filters with linear canonical transformations, Optics Communica tions 135(1-3): 32-36.
-
(1997)
Optics Communica tions
, vol.135
, Issue.1-3
, pp. 32-36
-
-
Barshan, B.1
Ozaktas, H.2
Kutey, M.3
-
7
-
-
0000010577
-
Wigner distribution function and its application to first-order optics
-
Bastiaans, M. (1979). Wigner distribution function and its application to first-order optics, Journal of Optical Society of America 69(12): 1710-1716.
-
(1979)
Journal of Optical Society of America
, vol.69
, Issue.12
, pp. 1710-1716
-
-
Bastiaans, M.1
-
8
-
-
0001484759
-
Abcd matrix formalism of fractional fourier optics
-
Bernardo, L. (1996). ABCD matrix formalism of fractional Fourier optics, Optical Engineering 35(03): 732-740.
-
(1996)
Optical Engineering
, vol.35
, Issue.3
, pp. 732-740
-
-
Bernardo, L.1
-
9
-
-
33846203141
-
Recognition of time-varying signals in the time-frequency domain by means of thewigner distribution
-
Bouachache, B. and Rodriguez, F. (1984). Recognition of time-varying signals in the time-frequency domain by means of theWigner distribution, IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, CA, USA, Vol. 9, pp. 239-242.
-
(1984)
IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, CA, USA
, vol.9
, pp. 239-242
-
-
Bouachache, B.1
Rodriguez, F.2
-
10
-
-
0019054579
-
The wigner distribution: A tool for time-frequency signal analysis, part i: Continuous time signals
-
Classen, T.A.C.M. and Mecklenbrauker, W.F.G. (1980). The Wigner distribution: A tool for time-frequency signal analysis, Part I: Continuous time signals, Philips Journal of Research 35(3): 217-250.
-
(1980)
Philips Journal of Research
, vol.35
, Issue.3
, pp. 217-250
-
-
Classen, T.A.C.M.1
Mecklenbrauker, W.F.G.2
-
11
-
-
0024705330
-
Time-frequency distributions: A review
-
Cohen, L. (1989). Time-frequency distributions: A review, Proceedings of the IEEE 77(7): 941-981.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.7
, pp. 941-981
-
-
Cohen, L.1
-
12
-
-
0001459151
-
Lens-system diffraction integral written in terms of matrix optics
-
Collins, S. (1970). Lens-system diffraction integral written in terms of matrix optics, Journal of Optical Society of America 60(9): 1168-1177.
-
(1970)
Journal of Optical Society of America
, vol.60
, Issue.9
, pp. 1168-1177
-
-
Collins, S.1
-
13
-
-
33749469804
-
Convolution theorem for the linear canonical transform and their applications
-
Deng, B., Tao, R. and Wang, Y. (2006). Convolution theorem for the linear canonical transform and their applications, Science in China, Series F: Information Sciences 49(5): 592-603.
-
(2006)
Science in China, Series F: Information Sciences
, vol.49
, Issue.5
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
14
-
-
84555219819
-
Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2d shapes
-
DOI: 10.2478/v10006-011-0060-8
-
Gdawiec, K. and Domanska, D. (2011). Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2D shapes, International Journal of Applied Mathematics and Computer Science 21(4): 757-767, DOI: 10.2478/v10006-011-0060-8.
-
(2011)
International Journal of Applied Mathematics and Computer Science
, vol.21
, Issue.4
, pp. 757-767
-
-
Gdawiec, K.1
Domanska, D.2
-
15
-
-
84881558038
-
Analysis of dirichlet, generalized hamming and triangular window functions in the linear canonical transform domain
-
DOI: 10.1007/s11760-011-0280-2
-
Goel, N. and Singh, K. (2011). Analysis of Dirichlet, generalized Hamming and triangular window functions in the linear canonical transform domain, Signal, Image and Video Processing DOI: 10.1007/s11760-011-0280-2.
-
(2011)
Signal, Image and Video Processing
-
-
Goel, N.1
Singh, K.2
-
16
-
-
40149104667
-
Cases where the linear canonical transform of a signal has compact support or is band-limited
-
Healy, J. and Sheridan, J. (2008). Cases where the linear canonical transform of a signal has compact support or is band-limited, Optics Letters 33(3): 228-230.
-
(2008)
Optics Letters
, vol.33
, Issue.3
, pp. 228-230
-
-
Healy, J.1
Sheridan, J.2
-
17
-
-
57749196950
-
Sampling and discretization of the linear canonical transform
-
Healy, J. and Sheridan, J.T. (2009). Sampling and discretization of the linear canonical transform, Signal Processing 89(4): 641-648.
-
(2009)
Signal Processing
, vol.89
, Issue.4
, pp. 641-648
-
-
Healy, J.1
Sheridan, J.T.2
-
18
-
-
19944406134
-
Fast numerical algorithm for the linear canonical transform
-
Hennelly, B. and Sheridan, J.T. (2005a). Fast numerical algorithm for the linear canonical transform, Journal of Optical Society of America A 22(5): 928-937.
-
(2005)
Journal of Optical Society of America A
, vol.22
, Issue.5
, pp. 928-937
-
-
Hennelly, B.1
Sheridan, J.T.2
-
19
-
-
19944379483
-
Generalizing, optimizing, and inventing numerical algorithms for the fractional fourier, fresnel, and linear canonical transforms
-
Hennelly, B. and Sheridan, J.T. (2005b). Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms, Journal of Optical Society of America A 22(5): 917-927.
-
(2005)
Journal of Optical Society of America A
, vol.22
, Issue.5
, pp. 917-927
-
-
Hennelly, B.1
Sheridan, J.T.2
-
21
-
-
56349123391
-
Convolution theorem of fractional fourier transformation derived by representation transformation in quantum mechanics
-
Hong-yi, F., Ren, H. and Hai-Liang, L. (2008). Convolution theorem of fractional Fourier transformation derived by representation transformation in quantum mechanics, Communication Theoretical Physics 50(3): 611-614.
-
(2008)
Communication Theoretical Physics
, vol.50
, Issue.3
, pp. 611-614
-
-
Hong-yi, F.1
Ren, H.2
Hai-Liang, L.3
-
22
-
-
4243291015
-
Mapping of classical canonical transformations to quantum unitary operators
-
Hong-yi, F. and VanderLinde, J. (1989). Mapping of classical canonical transformations to quantum unitary operators, Physical Review A 39(6): 2987-2993.
-
(1989)
Physical Review A
, vol.39
, Issue.6
, pp. 2987-2993
-
-
Hong-yi, F.1
VanderLinde, J.2
-
23
-
-
0037440480
-
New eigenmodes of propagation in quadratic graded index media and complex fractional fourier transform
-
Hong-yi, F. and Yue, F. (2003). New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Communication Theoretical Physics 39(1): 97-100.
-
(2003)
Communication Theoretical Physics
, vol.39
, Issue.1
, pp. 97-100
-
-
Hong-yi, F.1
Yue, F.2
-
24
-
-
0013039393
-
New approach for calculating the normally ordered form of squeeze operators
-
Hong-yi, F. and Zaidi, H. (1987). New approach for calculating the normally ordered form of squeeze operators, Physical Review D 35(6): 1831-1834.
-
(1987)
Physical Review D
, vol.35
, Issue.6
, pp. 1831-1834
-
-
Hong-yi, F.1
Zaidi, H.2
-
25
-
-
0001201391
-
Extended fractional fourier transforms
-
Hua, J., Liu, L. and Li, G. (1997). Extended fractional Fourier transforms, Journal of Optical Society of America A 14(12): 3316-3322.
-
(1997)
Journal of Optical Society of America A
, vol.14
, Issue.12
, pp. 3316-3322
-
-
Hua, J.1
Liu, L.2
Li, G.3
-
26
-
-
60349086700
-
-
Birkhauser/Springer, Boston, MA/New York, NY
-
Huang, J. and Pandic, P. (2006). Dirac Operators in Representation Theory, Birkhauser/Springer, Boston, MA/New York, NY.
-
(2006)
Dirac Operators in Representation Theory
-
-
Huang, J.1
Pandic, P.2
-
27
-
-
0030145797
-
The generalized fresnel transform and its applications to optics
-
James, D. and Agarwal, G. (1996). The generalized Fresnel transform and its applications to optics, Optics Communications 126(4-6): 207-212.
-
(1996)
Optics Communications
, vol.126
, Issue.4-6
, pp. 207-212
-
-
James, D.1
Agarwal, G.2
-
29
-
-
44949106262
-
Digital computation of linear canonical transforms
-
Koc, A., Ozaktas, H., Candan, C. and Kutey, M. (2008). Digital computation of linear canonical transforms, IEEE Transactions on Signal Processing 56(6): 2383-2394.
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.6
, pp. 2383-2394
-
-
Koc, A.1
Ozaktas, H.2
Candan, C.3
Kutey, M.4
-
30
-
-
33846571498
-
New sampling formulae related to linear canonical transform
-
Li, B., Tao, R. and Wang, Y. (2007). New sampling formulae related to linear canonical transform, Signal Processing 87(5): 983-990.
-
(2007)
Signal Processing
, vol.87
, Issue.5
, pp. 983-990
-
-
Li, B.1
Tao, R.2
Wang, Y.3
-
31
-
-
36849112629
-
Linear canonical transformations and their unitary representations
-
Moshinsky, M. and Quesne, C. (1971). Linear canonical transformations and their unitary representations, Journal of Mathematical Physics 12(8): 1772-1783.
-
(1971)
Journal of Mathematical Physics
, vol.12
, Issue.8
, pp. 1772-1783
-
-
Moshinsky, M.1
Quesne, C.2
-
32
-
-
77958407025
-
The fractional order fourier transform and its application to quantum mechanics
-
Namias, V. (1979). The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of Applied Mathematics 25(3): 241-265.
-
(1979)
IMA Journal of Applied Mathematics
, vol.25
, Issue.3
, pp. 241-265
-
-
Namias, V.1
-
33
-
-
0020102107
-
First-order optics-A canonical operator representation: Lossless systems
-
Nazarathy, M. and Shamir, J. (1982). First-order optics-A canonical operator representation: Lossless systems, Journal of Optical Society of America A 72(3): 356-364.
-
(1982)
Journal of Optical Society of America A
, vol.72
, Issue.3
, pp. 356-364
-
-
Nazarathy, M.1
Shamir, J.2
-
34
-
-
70350696047
-
Classical and quantum abcd-Transformation and the propagation of coherent and gaussian beams
-
DOI:10.1088/0953-4075/42/14/145504
-
Ogura, A. (2009). Classical and quantum ABCD-Transformation and the propagation of coherent and Gaussian beams, Journal of Physics, B: Atomic, Molecular and Optical Physics 42(14): 145504, DOI:10.1088/0953-4075/42/14/ 145504.
-
(2009)
Journal of Physics, B: Atomic, Molecular and Optical Physics
, vol.42
, Issue.14
, pp. 145504
-
-
Ogura, A.1
-
35
-
-
34547570260
-
Algebraic structure of the feynman propagator and a new correspondence for canonical transformations
-
DOI:10.1063/1.2748378
-
Ogura, A. and Sekiguchi, M. (2007). Algebraic structure of the Feynman propagator and a new correspondence for canonical transformations, Journal of Mathematical Physics 48(7): 072102, DOI:10.1063/1.2748378.
-
(2007)
Journal of Mathematical Physics
, vol.48
, Issue.7
, pp. 072102
-
-
Ogura, A.1
Sekiguchi, M.2
-
36
-
-
77955902651
-
Equivalence of linear canonical transform domains to fractional fourier domains and the bicanonical width product: A generalization of the space-bandwidth product
-
Oktem, F. and Ozaktas, H. (2010). Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: A generalization of the space-bandwidth product, Journal of Optical Society of America A 27(8): 1885-1895.
-
(2010)
Journal of Optical Society of America A
, vol.27
, Issue.8
, pp. 1885-1895
-
-
Oktem, F.1
Ozaktas, H.2
-
37
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional fourier domains and their relationship to chirp and wavelet transforms
-
Ozaktas, H., Barshan, B., Mendlovic, D. and Onural, L. (1994). Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms, Journal of Optical Society of America A 11(2): 547-559.
-
(1994)
Journal of Optical Society of America A
, vol.11
, Issue.2
, pp. 547-559
-
-
Ozaktas, H.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
38
-
-
0003621789
-
-
John Wiley and Sons, New York, NY
-
Ozaktas, H., Kutey, M. and Zalevsky, Z. (2000). The Fractional Fourier Transform with Applications in Optics and Signal Processing, John Wiley and Sons, New York, NY.
-
(2000)
The Fractional Fourier Transform with Applications in Optics and Signal Processing
-
-
Ozaktas, H.1
Kutey, M.2
Zalevsky, Z.3
-
39
-
-
0011712141
-
Extension of the fresnel transform to abcd systems
-
Palma, C. and Bagini, V. (1997). Extension of the Fresnel transform to ABCD systems, Journal of Optical Society of America A 14(8): 1774-1779.
-
(1997)
Journal of Optical Society of America A
, vol.14
, Issue.8
, pp. 1774-1779
-
-
Palma, C.1
Bagini, V.2
-
40
-
-
0035424885
-
Relations between fractional operations and time-frequency distributions, and their applications
-
Pei, S. and Ding, J.J. (2001). Relations between fractional operations and time-frequency distributions, and their applications, IEEE Transactions on Signal Processing 49(8): 1638-1655.
-
(2001)
IEEE Transactions on Signal Processing
, vol.49
, Issue.8
, pp. 1638-1655
-
-
Pei, S.1
Ding, J.J.2
-
41
-
-
33747799699
-
Closed-form discrete fractional and affine fourier transforms
-
Pei, S. and Ding, J.J. (2002a). Closed-form discrete fractional and affine Fourier transforms, IEEE Transactions on Signal Processing 48(5): 1338-1353.
-
(2002)
IEEE Transactions on Signal Processing
, vol.48
, Issue.5
, pp. 1338-1353
-
-
Pei, S.1
Ding, J.J.2
-
43
-
-
0018982701
-
Time-frequency representation of digital signals and systems based on short-Time fourier analysis
-
Portnoff, M. (1980). Time-frequency representation of digital signals and systems based on short-Time Fourier analysis, IEEE Transactions on Acoustics, Speech and Signal Processing 28(1): 55-69.
-
(1980)
IEEE Transactions on Acoustics, Speech and Signal Processing
, vol.28
, Issue.1
, pp. 55-69
-
-
Portnoff, M.1
-
45
-
-
33748045831
-
Signal separation using linear canonical and fractional fourier transforms
-
Sharma, K. and Joshi, S. (2006). Signal separation using linear canonical and fractional Fourier transforms, Optics Communications 265(2): 454-460.
-
(2006)
Optics Communications
, vol.265
, Issue.2
, pp. 454-460
-
-
Sharma, K.1
Joshi, S.2
-
46
-
-
34547795735
-
Papoulis-like generalized sampling expansions in fractional fourier domains and their application to super resolution
-
Sharma, K. and Joshi, S. (2007). Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to super resolution, Optics Communications 278(1): 52-59.
-
(2007)
Optics Communications
, vol.278
, Issue.1
, pp. 52-59
-
-
Sharma, K.1
Joshi, S.2
-
47
-
-
84861724344
-
On convolution and product theorems for frft
-
Singh, A. and Saxena, R. (2012). On convolution and product theorems for FRFT, Wireless Personal Communications 65(1): 189-201.
-
(2012)
Wireless Personal Communications
, vol.65
, Issue.1
, pp. 189-201
-
-
Singh, A.1
Saxena, R.2
-
48
-
-
33646129911
-
Sampling of linear canonical transformed signals
-
Stern, A. (2006). Sampling of linear canonical transformed signals, Signal Processing 86(7): 1421-1425.
-
(2006)
Signal Processing
, vol.86
, Issue.7
, pp. 1421-1425
-
-
Stern, A.1
-
49
-
-
77950258161
-
Classification in the gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution
-
DOI: 10.2478/v10006-010-0010-x
-
S wiercz, E. (2010). Classification in the Gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution, International Journal of Applied Mathematics and Computer Science 20(1): 135-147,DOI: 10.2478/v10006-010-0010-x.
-
(2010)
International Journal of Applied Mathematics and Computer Science
, vol.20
, Issue.1
, pp. 135-147
-
-
Swiercz, E.1
-
50
-
-
80053321740
-
Analysis of correlation based dimension reduction methods
-
DOI: 10.2478/v10006-011-0043-9
-
Shin, Y.J. and Park, C.H. (2011). Analysis of correlation based dimension reduction methods, International Journal of Applied Mathematics and Computer Science 21(3): 549-558, DOI: 10.2478/v10006-011-0043-9.
-
(2011)
International Journal of Applied Mathematics and Computer Science
, vol.21
, Issue.3
, pp. 549-558
-
-
Shin, Y.J.1
Park, C.H.2
-
51
-
-
54949091947
-
On sampling of bandlimited signals associated with the linear canonical transform
-
Tao, R., Li, B., Wang, Y. and Aggrey, G. (2008). On sampling of bandlimited signals associated with the linear canonical transform, IEEE Transactions on Signal Processing 56(11): 5454-5464.
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.11
, pp. 5454-5464
-
-
Tao, R.1
Li, B.2
Wang, Y.3
Aggrey, G.4
-
52
-
-
25144471257
-
-
Tsinghua University Press, Beijing
-
Tao, R., Qi, L. and Wang, Y. (2004). Theory and Applications of the Fractional Fourier Transform, Tsinghua University Press, Beijing.
-
(2004)
Theory and Applications of the Fractional Fourier Transform
-
-
Tao, R.1
Qi, L.2
Wang, Y.3
-
53
-
-
84863077201
-
A convolution and correlation theorem for the linear canonical transform and its application
-
Wei, D., Ran, Q. and Li, Y. (2012). A convolution and correlation theorem for the linear canonical transform and its application, Circuits, Systems, and Signal Processing 31(1): 301-312.
-
(2012)
Circuits, Systems, and Signal Processing
, vol.31
, Issue.1
, pp. 301-312
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
-
54
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
Wei, D., Ran, Q., Li, Y., Ma, J. and Tan, L. (2009). A convolution and product theorem for the linear canonical transform, IEEE Signal Processing Letters 16(10): 853-856.
-
(2009)
IEEE Signal Processing Letters
, vol.16
, Issue.10
, pp. 853-856
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
Ma, J.4
Tan, L.5
-
55
-
-
33745014742
-
On the quantum correlation for thermodynamic equilibrium
-
Wigner, E. (1932). On the quantum correlation for thermodynamic equilibrium, Physical Review 40(5): 749-759.
-
(1932)
Physical Review
, vol.40
, Issue.5
, pp. 749-759
-
-
Wigner, E.1
-
57
-
-
0032047886
-
A product and convolution theorems for the fractional fourier transform
-
Zayad, A. (1998). A product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters 5(4): 101-103.
-
(1998)
IEEE Signal Processing Letters
, vol.5
, Issue.4
, pp. 101-103
-
-
Zayad, A.1
-
58
-
-
0000733386
-
Coherent states: Theory and some applications
-
Zhang, W., Feng, D. and Gilmore, R. (1990). Coherent states: Theory and some applications, Reviews of Modern Physics 62(4): 867-927.
-
(1990)
Reviews of Modern Physics
, vol.62
, Issue.4
, pp. 867-927
-
-
Zhang, W.1
Feng, D.2
Gilmore, R.3
|