-
1
-
-
84864940815
-
Wigner-Ville distribution associated with the linear canonical transform
-
Bai, R.-F., Li, B.-Z., & Cheng, Q.-Y. (2012). Wigner-Ville distribution associated with the linear canonical transform. Journal of Applied Mathematics, 2012, 1-11.
-
(2012)
Journal of Applied Mathematics
, vol.2012
, pp. 1-11
-
-
Bai, R.-F.1
Li, B.-Z.2
Cheng, Q.-Y.3
-
2
-
-
0031079193
-
Optimal filters with linear canonical transformations
-
Barshan, B., Kutay, M. A., & Ozaktas, H. M. (1997). Optimal filters with linear canonical transformations. Optical Communications, 135, 32-36.
-
(1997)
Optical Communications
, vol.135
, pp. 32-36
-
-
Barshan, B.1
Kutay, M.A.2
Ozaktas, H.M.3
-
3
-
-
33749469804
-
Convolution theorems for the linear canonical transform and their applications
-
Deng, B., Tao, R., & Wang, Y. (2006). Convolution theorems for the linear canonical transform and their applications. Science in China Series F: Information Sciences, 49, 592-603
-
(2006)
Science in China Series F: Information Sciences
, vol.49
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
4
-
-
84871713535
-
Heisenberg’s uncertainty principles for the 2-D nonseparable linear canonical transforms
-
Ding, J.-J., & Pei, S.-C. (2013). Heisenberg’s uncertainty principles for the 2-D nonseparable linear canonical transforms. Signal Processing, 93, 1027-1043.
-
(2013)
Signal Processing
, vol.93
, pp. 1027-1043
-
-
Ding, J.-J.1
Pei, S.-C.2
-
6
-
-
57749196950
-
Sampling and discretization of the linear canonical transform
-
Healy, J. J., & Sheridan, J. T. (2009). Sampling and discretization of the linear canonical transform. Signal Processing, 89, 641-648.
-
(2009)
Signal Processing
, vol.89
, pp. 641-648
-
-
Healy, J.J.1
Sheridan, J.T.2
-
7
-
-
44949106262
-
Digital computation of linear canonical transforms
-
Koc, A., Ozaktas, H. M., Candan, C., & Kutay, M. A. (2008). Digital computation of linear canonical transforms. IEEE Transactions on Signal Processing, 56, 2383-2394
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, pp. 2383-2394
-
-
Koc, A.1
Ozaktas, H.M.2
Candan, C.3
Kutay, M.A.4
-
8
-
-
84878012898
-
Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis
-
Kou, K., Morais, J., & Zhang, Y. (2013). Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis. Mathematical Methods in the Applied Science, 36, 1028-1041.
-
(2013)
Mathematical Methods in the Applied Science
, vol.36
, pp. 1028-1041
-
-
Kou, K.1
Morais, J.2
Zhang, Y.3
-
9
-
-
0012452833
-
Discrete-time models for statistically self-similar signals
-
Lee, S., Zhao, W., Narasimha, R., & Rao, R.-M. (2003). Discrete-time models for statistically self-similar signals. IEEE Transactions on Signal Processing, 51, 1221-1230
-
(2003)
IEEE Transactions on Signal Processing
, vol.51
, pp. 1221-1230
-
-
Lee, S.1
Zhao, W.2
Narasimha, R.3
Rao, R.-M.4
-
10
-
-
33846571498
-
New sampling formulate related to linear canonical trans-form
-
Li, B.-Z., Tao, R., & Wang, Y. (2007). New sampling formulate related to linear canonical trans-form. Signal Processing, 87, 983-990.
-
(2007)
Signal Processing
, vol.87
, pp. 983-990
-
-
Li, B.-Z.1
Tao, R.2
Wang, Y.3
-
11
-
-
84864957740
-
Sampling in the linear canonical transform domain
-
Li, B.-Z., & Xu, T.-Z. (2012). Sampling in the linear canonical transform domain. Mathematical Problems in Engineering, 2012, 1-14.
-
(2012)
Mathematical Problems in Engineering
, vol.2012
, pp. 1-14
-
-
Li, B.-Z.1
Xu, T.-Z.2
-
12
-
-
84861083703
-
Spectral analysis of sampled signals in the linear canonical transform domain
-
Li, B.-Z., & Xu, T.-Z. (2012). Spectral analysis of sampled signals in the linear canonical transform domain. Mathematical Problems in Engineering, 2012, 1-19.
-
(2012)
Mathematical Problems in Engineering
, vol.2012
, pp. 1-19
-
-
Li, B.-Z.1
Xu, T.-Z.2
-
13
-
-
84862794874
-
Approximating bandlimited signals associated with the LCT domain from nonuniform samples at unknown locations
-
Li, C.-P., Li, B.-Z., & Xu, T.-Z. (2012). Approximating bandlimited signals associated with the LCT domain from nonuniform samples at unknown locations. Signal Processing, 92, 1658-1664
-
(2012)
Signal Processing
, vol.92
, pp. 1658-1664
-
-
Li, C.-P.1
Li, B.-Z.2
Xu, T.-Z.3
-
14
-
-
34547404186
-
The fractional Fourier domain analysis of decimation and interpolation
-
Meng, X.-Y., Tao, R., & Wang, Y. (2007). The fractional Fourier domain analysis of decimation and interpolation. Science in China Series F: Information Sciences, 50, 521-538.
-
(2007)
Science in China Series F: Information Sciences
, vol.50
, pp. 521-538
-
-
Meng, X.-Y.1
Tao, R.2
Wang, Y.3
-
15
-
-
85008055130
-
Exact relation between continuous and discrete linear canonical transforms
-
Oktem, F. S., & Ozaktas, H. M. (2009). Exact relation between continuous and discrete linear canonical transforms. IEEE Transactions on Signal Processing, 57, 727-730
-
(2009)
IEEE Transactions on Signal Processing
, vol.57
, pp. 727-730
-
-
Oktem, F.S.1
Ozaktas, H.M.2
-
18
-
-
13244255439
-
A two-channel nonuniform perfect reconstruction filter bank with irrational down-sampling factors
-
Pei, S.-C., & Kao, M.-P. (2005). A two-channel nonuniform perfect reconstruction filter bank with irrational down-sampling factors. IEEE Signal Processing Letters, 12, 116-119
-
(2005)
IEEE Signal Processing Letters
, vol.12
, pp. 116-119
-
-
Pei, S.-C.1
Kao, M.-P.2
-
19
-
-
84870298892
-
Speech recovery based on the linear canonical transform
-
Qiu, W., Li, B.-Z., & Li, X.-W. (2013). Speech recovery based on the linear canonical transform. Speech Communication, 55, 40-50.
-
(2013)
Speech Communication
, vol.55
, pp. 40-50
-
-
Qiu, W.1
Li, B.-Z.2
Li, X.-W.3
-
20
-
-
0021444664
-
Digital methods for conversion between arbitrary sampling frequencies. IEEE Transactions on Acoustic, Speech
-
Ramstad, T. A. (1984). Digital methods for conversion between arbitrary sampling frequencies. IEEE Transactions on Acoustic, Speech, Signal Processing, 30-32, 577-591
-
(1984)
Signal Processing
, vol.30-32
, pp. 577-591
-
-
Ramstad, T.A.1
-
21
-
-
33748045831
-
Signal separation using linear canonical and fractional Fourier transforms
-
Sharma, K. K., & Joshi, S. D. (2006). Signal separation using linear canonical and fractional Fourier transforms. Optical Communications, 265, 454-460.
-
(2006)
Optical Communications
, vol.265
, pp. 454-460
-
-
Sharma, K.K.1
Joshi, S.D.2
-
23
-
-
54949091947
-
On sampling of bandlimited signals associated with the linear canonical transform
-
Tao, R., Li, B.-Z., & Wang, Y. (2008). On sampling of bandlimited signals associated with the linear canonical transform. IEEE Transactions on Signal Processing, 56, 5454-5464
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, pp. 5454-5464
-
-
Tao, R.1
Li, B.-Z.2
Wang, Y.3
-
25
-
-
84863077201
-
A convolution and correlation theorem for the cinear canonical transform and its application. Circuits
-
We, D., Ran, Q., & Li, Y. (2012). A convolution and correlation theorem for the cinear canonical transform and its application. Circuits, Systems, and Signal Processing, 31, 301-312
-
(2012)
Systems, and Signal Processing
, vol.31
, pp. 301-312
-
-
We, D.1
Ran, Q.2
Li, Y.3
-
26
-
-
84876078451
-
Sampling of bandlimited signals in the linear canonical transform domain
-
We, D., Ran, Q., & Li, Y. (2013). Sampling of bandlimited signals in the linear canonical transform domain. Signal Image and Video Processing, 7, 553-558.
-
(2013)
Signal Image and Video Processing
, vol.7
, pp. 553-558
-
-
We, D.1
Ran, Q.2
Li, Y.3
-
27
-
-
80051551101
-
Reconstruction of band-limited signals from multichannel and periodic nonuniform samples in the linear canonical transform domain
-
Wei, D., Ran, Q., & Li, Y. (2011). Reconstruction of band-limited signals from multichannel and periodic nonuniform samples in the linear canonical transform domain. Optics Communications, 284, 4307-4315.
-
(2011)
Optics Communications
, vol.284
, pp. 4307-4315
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
-
28
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
Wei, D., Ran, Q., Li, Y., & Ma, J. (2009). A convolution and product theorem for the linear canonical transform. IEEE Signal Processing Letters, 16, 853-856.
-
(2009)
IEEE Signal Processing Letters
, vol.16
, pp. 853-856
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
Ma, J.4
-
30
-
-
84870440210
-
Sampling theorems for signals periodic in the linear canonical transform domain
-
Xiao, L., & Sun, W. (2013). Sampling theorems for signals periodic in the linear canonical transform domain. Optical Communications, 290, 14-18.
-
(2013)
Optical Communications
, vol.290
, pp. 14-18
-
-
Xiao, L.1
Sun, W.2
-
32
-
-
84996481497
-
Wigner distribution moments associated with the linear canonical transform
-
Yan, J.-P., Li, B.-Z., Chen, Y.-H., & Cheng, Q.-Y. (2013). Wigner distribution moments associated with the linear canonical transform. International Journal of Electronics, 100, 473-481
-
(2013)
International Journal of Electronics
, vol.100
, pp. 473-481
-
-
Yan, J.-P.1
Li, B.-Z.2
Chen, Y.-H.3
Cheng, Q.-Y.4
-
33
-
-
67650119620
-
Uncertainty principles for linear canonical trans-form
-
Zhao, J., Tao, R., Li, Y.-L., & Wang, Y. (2009). Uncertainty principles for linear canonical trans-form. IEEE Transactions on Signal Processing, 57, 2856-2858.
-
(2009)
IEEE Transactions on Signal Processing
, vol.57
, pp. 2856-2858
-
-
Zhao, J.1
Tao, R.2
Li, Y.-L.3
Wang, Y.4
-
34
-
-
47949105809
-
Sampling rate conversion for linear canonical transform
-
Zhao, J., Tao, R., & Wang, Y. (2008). Sampling rate conversion for linear canonical transform. Signal Processing, 88, 2825-2832.
-
(2008)
Signal Processing
, vol.88
, pp. 2825-2832
-
-
Zhao, J.1
Tao, R.2
Wang, Y.3
|