-
1
-
-
77958407025
-
The fractional order Fourier transform and its application to quantum mechanics
-
Namias V.: The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 25, 241-265 (1980).
-
(1980)
J. Inst. Math. Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
2
-
-
0028546458
-
The fractional Fourier transform and time- frequency representations
-
Almeida L. B.: The fractional Fourier transform and time- frequency representations. In: IEEE Trans. Signal Process. 42(11), 3084-3091 (1994).
-
(1994)
In: IEEE Trans. Signal Process.
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.B.1
-
4
-
-
79952003947
-
Fractional Fourier transform as a signal processing tool: an overview of recent developments
-
Sejdic E., Djurovic I., Stankovic L.: Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal process. 91, 1351-1369 (2011).
-
(2011)
Signal Process.
, vol.91
, pp. 1351-1369
-
-
Sejdic, E.1
Djurovic, I.2
Stankovic, L.3
-
5
-
-
0030243105
-
Digital computation of the fractional Fourier transform
-
Ozaktas H. M., Arikan O., Kutay M. A., Bozdagi G.: Digital computation of the fractional Fourier transform. in: IEEE Trans. Signal Process. 44, 2141-2150 (1996).
-
(1996)
In: IEEE Trans. Signal Process.
, vol.44
, pp. 2141-2150
-
-
Ozaktas, H.M.1
Arikan, O.2
Kutay, M.A.3
Bozdagi, G.4
-
6
-
-
0031143161
-
Optimal filtering in fractional Fourier domain
-
Kutay M. A., Ozaktas H. M., Arikan O., Onural L.: Optimal filtering in fractional Fourier domain. In: IEEE Trans. Signal Process. 45, 1129-1143 (1997).
-
(1997)
In: IEEE Trans. Signal Process.
, vol.45
, pp. 1129-1143
-
-
Kutay, M.A.1
Ozaktas, H.M.2
Arikan, O.3
Onural, L.4
-
7
-
-
72949089483
-
Adaptive fractional Fourier domain filtering
-
Durak L., Aldirmaz S.: Adaptive fractional Fourier domain filtering. Signal process. 90, 1188-1196 (2010).
-
(2010)
Signal Process.
, vol.90
, pp. 1188-1196
-
-
Durak, L.1
Aldirmaz, S.2
-
8
-
-
0028459601
-
Relationship between the Radon-Wigner and the fractional Fourier transform
-
Lohmann A. W., Soffer B. H.: Relationship between the Radon-Wigner and the fractional Fourier transform. J. Opt. Soc. Am. A. 11, 1798-1801 (1994).
-
(1994)
J. Opt. Soc. Am. A.
, vol.11
, pp. 1798-1801
-
-
Lohmann, A.W.1
Soffer, B.H.2
-
9
-
-
0035424885
-
Relations between fractional operations and time-frequency distributions, and their applications
-
Pei S. C., Ding J. J.: Relations between fractional operations and time-frequency distributions, and their applications. In: IEEE Trans. Signal Process. 49, 1638-1655 (2001).
-
(2001)
In: IEEE Trans. Signal Process.
, vol.49
, pp. 1638-1655
-
-
Pei, S.C.1
Ding, J.J.2
-
10
-
-
77954593321
-
Fractional Fourier transform, wigner distribution, and filter design for stationary and nonstationary random processes
-
Pei S. C., Ding J. J.: Fractional Fourier transform, wigner distribution, and filter design for stationary and nonstationary random processes. In: IEEE Trans. Signal Process. 58, 4079-4092 (2010).
-
(2010)
In: IEEE Trans. Signal Process.
, vol.58
, pp. 4079-4092
-
-
Pei, S.C.1
Ding, J.J.2
-
11
-
-
0030413251
-
On the relationship between the Fourier transform and fractional Fourier transform
-
Zayed A. I.: On the relationship between the Fourier transform and fractional Fourier transform. In: IEEE Signal Process. Lett. 3, 310-311 (1996).
-
(1996)
In: IEEE Signal Process. Lett.
, vol.3
, pp. 310-311
-
-
Zayed, A.I.1
-
12
-
-
0029369313
-
Fractional Fourier domains
-
Ozaktas H. M., Aytur O.: Fractional Fourier domains. Signal Process. 46, 119-124 (1995).
-
(1995)
Signal Process.
, vol.46
, pp. 119-124
-
-
Ozaktas, H.M.1
Aytur, O.2
-
13
-
-
0032295753
-
A unified framework for the fractional Fourier transform
-
Cariolaro G., Erseghe T., Kraniauskas P., Laurenti N.: A unified framework for the fractional Fourier transform. In: IEEE Trans. Signal Process. 46, 3206-3219 (1998).
-
(1998)
In: IEEE Trans. Signal Process.
, vol.46
, pp. 3206-3219
-
-
Cariolaro, G.1
Erseghe, T.2
Kraniauskas, P.3
Laurenti, N.4
-
15
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
Xia X.: On bandlimited signals with fractional Fourier transform. In: IEEE Signal Process. Lett. 3, 72-74 (1996).
-
(1996)
In: IEEE Signal Process. Lett.
, vol.3
, pp. 72-74
-
-
Xia, X.1
-
16
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
Almeida L. B.: Product and convolution theorems for the fractional Fourier transform. In: IEEE Signal Process. Lett. 4, 15-17 (1997).
-
(1997)
In: IEEE Signal Process. Lett.
, vol.4
, pp. 15-17
-
-
Almeida, L.B.1
-
17
-
-
0032047886
-
A Product and convolution theorems for the fractional Fourier transform
-
Zayed A. I.: A Product and convolution theorems for the fractional Fourier transform. In: IEEE Signal Process. Lett. 5, 101-103 (1998).
-
(1998)
In: IEEE Signal Process. Lett.
, vol.5
, pp. 101-103
-
-
Zayed, A.I.1
-
18
-
-
0035340022
-
Fractional convolution and correlation via operatior methods and application to detection of linear FM signals
-
Akay O., Boudreaux-Bartels G. F.: Fractional convolution and correlation via operatior methods and application to detection of linear FM signals. In: IEEE Trans. Signal Process. 49, 979-993 (2001).
-
(2001)
In: IEEE Trans. Signal Process.
, vol.49
, pp. 979-993
-
-
Akay, O.1
Boudreaux-Bartels, G.F.2
-
19
-
-
56749170311
-
Extrapolation of signals using the method of alternating projections in fractional Fourier domain
-
Sharma K. K., Joshi S. D.: Extrapolation of signals using the method of alternating projections in fractional Fourier domain. Signal, Image, Video Process. 2(3), 177-182 (2008).
-
(2008)
Signal, Image, Video Process.
, vol.2
, Issue.3
, pp. 177-182
-
-
Sharma, K.K.1
Joshi, S.D.2
-
20
-
-
77955848270
-
Fractional Laplace transform
-
Sharma K. K., Joshi S. D.: Fractional Laplace transform. Signal, Image, Video Process. 4(3), 377-379 (2010).
-
(2010)
Signal, Image, Video Process.
, vol.4
, Issue.3
, pp. 377-379
-
-
Sharma, K.K.1
Joshi, S.D.2
-
21
-
-
33749469804
-
Convolution theorems for the linear canonical transform and their applications
-
Deng B., Tao R., Wang Y.: Convolution theorems for the linear canonical transform and their applications. Sci. China Ser. F: Inform. Sci. 49, 592-603 (2006).
-
(2006)
Sci. China Ser. F: Inform. Sci.
, vol.49
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
22
-
-
76749102797
-
Fractional convolution, fractional correlation and their translation invariance properties
-
Torres R., Pellat-Finet P., Torres Y.: Fractional convolution, fractional correlation and their translation invariance properties. Signal Process. 90, 1976-1984 (2010).
-
(2010)
Signal Process.
, vol.90
, pp. 1976-1984
-
-
Torres, R.1
Pellat-Finet, P.2
Torres, Y.3
-
23
-
-
34547795735
-
Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to superresolution
-
Sharma K. K., Joshi S. D.: Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to superresolution. Opt. Commun. 278, 52-59 (2007).
-
(2007)
Opt. Commun.
, vol.278
, pp. 52-59
-
-
Sharma, K.K.1
Joshi, S.D.2
-
24
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
Wei D. Y., Ran Q. W., Li Y. M., Ma J., Tan L. Y.: A convolution and product theorem for the linear canonical transform. In: IEEE Signal Process. Lett. 16, 853-856 (2009).
-
(2009)
In: IEEE Signal Process. Lett.
, vol.16
, pp. 853-856
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
Ma, J.4
Tan, L.Y.5
-
25
-
-
84863077201
-
A convolution and correlation theorem for the linear canonical transform and its application, Circuits syst
-
doi: 10. 1007/s00034-011-9319-4
-
Wei, D. Y., Ran, Q. W., Li, Y. M.: A convolution and correlation theorem for the linear canonical transform and its application, Circuits syst. Signal Process. (2011). doi: 10. 1007/s00034-011-9319-4.
-
(2011)
Signal Process
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
-
26
-
-
77952173338
-
Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform
-
Wei D. Y., Ran Q. W., Li Y. M.: Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform. In: IEEE Signal Process. Lett. 17, 595-598 (2010).
-
(2010)
In: IEEE Signal Process. Lett.
, vol.17
, pp. 595-598
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
-
27
-
-
80054885681
-
Sampling of fractional bandlimited signals associated with fractional Fourier transform, Optik-Int
-
doi: 10. 1016/j. ijleo. 2011. 02. 024, (2011)
-
Wei, D. Y., Ran, Q. W., Li, Y. M.: Sampling of fractional bandlimited signals associated with fractional Fourier transform, Optik-Int. J. Light Electron Opt. (2011). doi: 10. 1016/j. ijleo. 2011. 02. 024, (2011).
-
(2011)
J. Light Electron Opt.
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
-
28
-
-
77954564062
-
Sampling of bandlimited signals in fractional Fourier transform domain
-
Ran Q. W., Zhao H., Tan L. Y., Ma J.: Sampling of bandlimited signals in fractional Fourier transform domain. Circuits syst. Signal Process 29, 459-467 (2010).
-
(2010)
Circuits Syst. Signal Process
, vol.29
, pp. 459-467
-
-
Ran, Q.W.1
Zhao, H.2
Tan, L.Y.3
Ma, J.4
-
29
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms
-
Ozaktas H. M., Barshan B., Mendlovic D., Onural L.: Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms. J. Opt. Soc. Am. A. 11, 547-559 (1994).
-
(1994)
J. Opt. Soc. Am. A.
, vol.11
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
30
-
-
0032682104
-
Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration
-
Erden M. F., Kutay M. A., Ozaktas H. M.: Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. In: IEEE Trans. Signal Process. 47, 1458-1462 (1999).
-
(1999)
In: IEEE Trans. Signal Process.
, vol.47
, pp. 1458-1462
-
-
Erden, M.F.1
Kutay, M.A.2
Ozaktas, H.M.3
|