메뉴 건너뛰기




Volumn 123, Issue 16, 2012, Pages 1478-1481

New convolution theorem for the linear canonical transform and its translation invariance property

Author keywords

Convolution theorem; Linear canonical transform; Translation invariance

Indexed keywords

CLOSED-FORM EXPRESSION; CONVOLUTION STRUCTURE; CONVOLUTION THEOREMS; EFFECTIVE TRANSLATION; LINEAR CANONICAL TRANSFORM; TRANSLATION INVARIANCE; TRANSLATION OPERATOR;

EID: 84863625158     PISSN: 00304026     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijleo.2011.08.054     Document Type: Article
Times cited : (56)

References (28)
  • 1
    • 36849112629 scopus 로고
    • Linear canonical transformations and their unitary representations
    • M. Moshinsky, and C. Quesne Linear canonical transformations and their unitary representations J. Math. Phys. 12 1971 1772 1783
    • (1971) J. Math. Phys. , vol.12 , pp. 1772-1783
    • Moshinsky, M.1    Quesne, C.2
  • 4
    • 0036173698 scopus 로고    scopus 로고
    • Eigenfunctions of linear canonical transform
    • S.C. Pei, and J.J. Ding Eigenfunctions of linear canonical transform IEEE Trans. Signal Process. 50 2002 11 26
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 11-26
    • Pei, S.C.1    Ding, J.J.2
  • 5
    • 0028546458 scopus 로고
    • The fractional Fourier transform and time-frequency representations
    • L.B. Almeida The fractional Fourier transform and time-frequency representations IEEE Trans. Signal Process. 42 1994 3084 3091
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 3084-3091
    • Almeida, L.B.1
  • 6
    • 0030145797 scopus 로고    scopus 로고
    • The generalized Fresnel transform and its applications to optics
    • D.F.V. James, and G.S. Agarwal The generalized Fresnel transform and its applications to optics Opt. Commun. 126 1996 207 212
    • (1996) Opt. Commun. , vol.126 , pp. 207-212
    • James, D.F.V.1    Agarwal, G.S.2
  • 7
    • 0001201391 scopus 로고    scopus 로고
    • Extended fractional Fourier transforms
    • J. Hua, L. Liu, and G. Li Extended fractional Fourier transforms J. Opt. Soc. Am. A 14 1997 3316 3322
    • (1997) J. Opt. Soc. Am. A , vol.14 , pp. 3316-3322
    • Hua, J.1    Liu, L.2    Li, G.3
  • 8
    • 0028546432 scopus 로고
    • Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation
    • S. Abe, and J.T. Sheridan Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation Opt. Lett. 19 1994 1801 1803
    • (1994) Opt. Lett. , vol.19 , pp. 1801-1803
    • Abe, S.1    Sheridan, J.T.2
  • 9
    • 34248340607 scopus 로고    scopus 로고
    • Classification of lossless first-order optical systems and the linear canonical transformation
    • M.J. Bastiaans, and T. Alieva Classification of lossless first-order optical systems and the linear canonical transformation J. Opt. Soc. Am. A 24 2007 1053 1062
    • (2007) J. Opt. Soc. Am. A , vol.24 , pp. 1053-1062
    • Bastiaans, M.J.1    Alieva, T.2
  • 10
    • 37549033485 scopus 로고    scopus 로고
    • Properties of the linear canonical integral transformation
    • T. Alieva, and M.J. Bastiaans Properties of the linear canonical integral transformation J. Opt. Soc. Am. A. 24 2007 3658 3665
    • (2007) J. Opt. Soc. Am. A. , vol.24 , pp. 3658-3665
    • Alieva, T.1    Bastiaans, M.J.2
  • 11
    • 0031079193 scopus 로고    scopus 로고
    • Optimal filtering with linear canonical transformations
    • B. Barshan, M.A. Kutay, and H.M. Ozaktas Optimal filtering with linear canonical transformations Opt. Commun. 135 1997 32 36
    • (1997) Opt. Commun. , vol.135 , pp. 32-36
    • Barshan, B.1    Kutay, M.A.2    Ozaktas, H.M.3
  • 12
    • 33748045831 scopus 로고    scopus 로고
    • Signal separation using linear canonical and fractional Fourier transform
    • K.K. Sharma, and S.D. Joshi Signal separation using linear canonical and fractional Fourier transform Opt. Commun. 265 2006 454 460
    • (2006) Opt. Commun. , vol.265 , pp. 454-460
    • Sharma, K.K.1    Joshi, S.D.2
  • 14
    • 33749469804 scopus 로고    scopus 로고
    • Convolution theorems for the linear canonical transform and their applications
    • B. Deng, R. Tao, and Y. Wang Convolution theorems for the linear canonical transform and their applications Sci. China Ser. F-Inform. Sci. 49 2006 592 603
    • (2006) Sci. China Ser. F-Inform. Sci. , vol.49 , pp. 592-603
    • Deng, B.1    Tao, R.2    Wang, Y.3
  • 15
    • 77952129659 scopus 로고    scopus 로고
    • A convolution and product theorem for the linear canonical transform
    • D.Y. Wei, Q.W. Ran, Y.M. Li, J. Ma, and L.Y. Tan A convolution and product theorem for the linear canonical transform IEEE Signal Process. Lett. 16 2009 853 856
    • (2009) IEEE Signal Process. Lett. , vol.16 , pp. 853-856
    • Wei, D.Y.1    Ran, Q.W.2    Li, Y.M.3    Ma, J.4    Tan, L.Y.5
  • 16
    • 77549084009 scopus 로고    scopus 로고
    • Image sharing scheme based on discrete fractional random transform
    • Z.J. Liu, S.T. Liu, and M.A. Ahmad Image sharing scheme based on discrete fractional random transform Optik 121 2010 495 499
    • (2010) Optik , vol.121 , pp. 495-499
    • Liu, Z.J.1    Liu, S.T.2    Ahmad, M.A.3
  • 17
    • 77957908690 scopus 로고    scopus 로고
    • Single phase encoding method based on the fractional Fourier transform
    • Z.J. Liu, J.M. Dai, X.G. Sun, and S.T. Liu Single phase encoding method based on the fractional Fourier transform Optik 121 2010 1748 1751
    • (2010) Optik , vol.121 , pp. 1748-1751
    • Liu, Z.J.1    Dai, J.M.2    Sun, X.G.3    Liu, S.T.4
  • 18
    • 79551526791 scopus 로고    scopus 로고
    • Linear canonical ambiguity function and linear canonical transform moments
    • H. Zhao, Q.W. Ran, J. Ma, and L.Y. Tan Linear canonical ambiguity function and linear canonical transform moments Optik 122 2011 540 543
    • (2011) Optik , vol.122 , pp. 540-543
    • Zhao, H.1    Ran, Q.W.2    Ma, J.3    Tan, L.Y.4
  • 19
    • 44349173784 scopus 로고    scopus 로고
    • Uncertainty principles in linear canonical transform domains and some of their implications in optics
    • A. Stern Uncertainty principles in linear canonical transform domains and some of their implications in optics J. Opt. Soc. Am. A 25 2008 647 652
    • (2008) J. Opt. Soc. Am. A , vol.25 , pp. 647-652
    • Stern, A.1
  • 20
    • 33646129911 scopus 로고    scopus 로고
    • Sampling of linear canonical transformed signals
    • A. Stern Sampling of linear canonical transformed signals Signal Process. 86 2006 1421 1425
    • (2006) Signal Process. , vol.86 , pp. 1421-1425
    • Stern, A.1
  • 21
    • 64249164703 scopus 로고    scopus 로고
    • On bandlimited signals associated with linear canonical transform
    • H. Zhao, Q.W. Ran, J. Ma, and L.Y. Tan On bandlimited signals associated with linear canonical transform IEEE Signal Process. Lett. 16 2009 343 345
    • (2009) IEEE Signal Process. Lett. , vol.16 , pp. 343-345
    • Zhao, H.1    Ran, Q.W.2    Ma, J.3    Tan, L.Y.4
  • 22
    • 0030826059 scopus 로고    scopus 로고
    • Product and convolution theorems for the fractional Fourier transform
    • L.B. Almeida Product and convolution theorems for the fractional Fourier transform IEEE Signal Process. Lett. 4 1997 15 17
    • (1997) IEEE Signal Process. Lett. , vol.4 , pp. 15-17
    • Almeida, L.B.1
  • 23
    • 0032047886 scopus 로고    scopus 로고
    • A product and convolution theorem for the fractional Fourier transform
    • A.I. Zayed A product and convolution theorem for the fractional Fourier transform IEEE Signal Process. Lett. 4 1998 101 103
    • (1998) IEEE Signal Process. Lett. , vol.4 , pp. 101-103
    • Zayed, A.I.1
  • 24
    • 76749102797 scopus 로고    scopus 로고
    • Fractional convolution, fractional correlation and their translation invariance properties
    • R. Torres, P. Pellat-Finet, and Y. Torres Fractional convolution, fractional correlation and their translation invariance properties Signal Process. 90 2010 1976 1984
    • (2010) Signal Process. , vol.90 , pp. 1976-1984
    • Torres, R.1    Pellat-Finet, P.2    Torres, Y.3
  • 25
    • 84861724344 scopus 로고    scopus 로고
    • On convolution and product theorems for FRFT
    • DOI:10.1007/s11277-011-0235-5
    • A.K. Singh, and R. Saxena On convolution and product theorems for FRFT Wireless Pers. Commun. 2011 DOI:10.1007/s11277-011-0235-5
    • (2011) Wireless Pers. Commun.
    • Singh, A.K.1    Saxena, R.2
  • 26
    • 0030107597 scopus 로고    scopus 로고
    • On bandlimited signals with fractional Fourier transform
    • X.G. Xia On bandlimited signals with fractional Fourier transform IEEE Signal Process. Lett. 3 1996 72 74
    • (1996) IEEE Signal Process. Lett. , vol.3 , pp. 72-74
    • Xia, X.G.1
  • 27
    • 77952173338 scopus 로고    scopus 로고
    • Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform
    • D.Y. Wei, Q.W. Ran, and Y.M. Li Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform IEEE Signal Processing Lett. 17 2010 595 598
    • (2010) IEEE Signal Processing Lett. , vol.17 , pp. 595-598
    • Wei, D.Y.1    Ran, Q.W.2    Li, Y.M.3
  • 28
    • 80054885681 scopus 로고    scopus 로고
    • Sampling of fractional bandlimited signals associated with fractional Fourier transform
    • DOI: 10.1016/j.ijleo.2011.02.024
    • D.Y. Wei, Q.W. Ran, and Y.M. Li Sampling of fractional bandlimited signals associated with fractional Fourier transform Optik 2011 DOI: 10.1016/j.ijleo.2011.02.024
    • (2011) Optik
    • Wei, D.Y.1    Ran, Q.W.2    Li, Y.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.