-
1
-
-
36849112629
-
Linear canonical transformations and their unitary representations
-
M. Moshinsky, and C. Quesne Linear canonical transformations and their unitary representations J. Math. Phys. 12 1971 1772 1783
-
(1971)
J. Math. Phys.
, vol.12
, pp. 1772-1783
-
-
Moshinsky, M.1
Quesne, C.2
-
4
-
-
0036173698
-
Eigenfunctions of linear canonical transform
-
S.C. Pei, and J.J. Ding Eigenfunctions of linear canonical transform IEEE Trans. Signal Process. 50 2002 11 26
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, pp. 11-26
-
-
Pei, S.C.1
Ding, J.J.2
-
5
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
L.B. Almeida The fractional Fourier transform and time-frequency representations IEEE Trans. Signal Process. 42 1994 3084 3091
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, pp. 3084-3091
-
-
Almeida, L.B.1
-
6
-
-
0030145797
-
The generalized Fresnel transform and its applications to optics
-
D.F.V. James, and G.S. Agarwal The generalized Fresnel transform and its applications to optics Opt. Commun. 126 1996 207 212
-
(1996)
Opt. Commun.
, vol.126
, pp. 207-212
-
-
James, D.F.V.1
Agarwal, G.S.2
-
7
-
-
0001201391
-
Extended fractional Fourier transforms
-
J. Hua, L. Liu, and G. Li Extended fractional Fourier transforms J. Opt. Soc. Am. A 14 1997 3316 3322
-
(1997)
J. Opt. Soc. Am. A
, vol.14
, pp. 3316-3322
-
-
Hua, J.1
Liu, L.2
Li, G.3
-
8
-
-
0028546432
-
Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation
-
S. Abe, and J.T. Sheridan Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation Opt. Lett. 19 1994 1801 1803
-
(1994)
Opt. Lett.
, vol.19
, pp. 1801-1803
-
-
Abe, S.1
Sheridan, J.T.2
-
9
-
-
34248340607
-
Classification of lossless first-order optical systems and the linear canonical transformation
-
M.J. Bastiaans, and T. Alieva Classification of lossless first-order optical systems and the linear canonical transformation J. Opt. Soc. Am. A 24 2007 1053 1062
-
(2007)
J. Opt. Soc. Am. A
, vol.24
, pp. 1053-1062
-
-
Bastiaans, M.J.1
Alieva, T.2
-
10
-
-
37549033485
-
Properties of the linear canonical integral transformation
-
T. Alieva, and M.J. Bastiaans Properties of the linear canonical integral transformation J. Opt. Soc. Am. A. 24 2007 3658 3665
-
(2007)
J. Opt. Soc. Am. A.
, vol.24
, pp. 3658-3665
-
-
Alieva, T.1
Bastiaans, M.J.2
-
11
-
-
0031079193
-
Optimal filtering with linear canonical transformations
-
B. Barshan, M.A. Kutay, and H.M. Ozaktas Optimal filtering with linear canonical transformations Opt. Commun. 135 1997 32 36
-
(1997)
Opt. Commun.
, vol.135
, pp. 32-36
-
-
Barshan, B.1
Kutay, M.A.2
Ozaktas, H.M.3
-
12
-
-
33748045831
-
Signal separation using linear canonical and fractional Fourier transform
-
K.K. Sharma, and S.D. Joshi Signal separation using linear canonical and fractional Fourier transform Opt. Commun. 265 2006 454 460
-
(2006)
Opt. Commun.
, vol.265
, pp. 454-460
-
-
Sharma, K.K.1
Joshi, S.D.2
-
13
-
-
33749010056
-
Metrology and the linear canonical transform
-
B.M. Hennelly, D.P. Kelly, R.F. Patten, J.E. Ward, U. Gopinathan, F.T. O'Neill, and J.T. Sheridan Metrology and the linear canonical transform J. Mod. Opt. 53 2006 2167 2186
-
(2006)
J. Mod. Opt.
, vol.53
, pp. 2167-2186
-
-
Hennelly, B.M.1
Kelly, D.P.2
Patten, R.F.3
Ward, J.E.4
Gopinathan, U.5
O'Neill, F.T.6
Sheridan, J.T.7
-
14
-
-
33749469804
-
Convolution theorems for the linear canonical transform and their applications
-
B. Deng, R. Tao, and Y. Wang Convolution theorems for the linear canonical transform and their applications Sci. China Ser. F-Inform. Sci. 49 2006 592 603
-
(2006)
Sci. China Ser. F-Inform. Sci.
, vol.49
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
15
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
D.Y. Wei, Q.W. Ran, Y.M. Li, J. Ma, and L.Y. Tan A convolution and product theorem for the linear canonical transform IEEE Signal Process. Lett. 16 2009 853 856
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, pp. 853-856
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
Ma, J.4
Tan, L.Y.5
-
16
-
-
77549084009
-
Image sharing scheme based on discrete fractional random transform
-
Z.J. Liu, S.T. Liu, and M.A. Ahmad Image sharing scheme based on discrete fractional random transform Optik 121 2010 495 499
-
(2010)
Optik
, vol.121
, pp. 495-499
-
-
Liu, Z.J.1
Liu, S.T.2
Ahmad, M.A.3
-
17
-
-
77957908690
-
Single phase encoding method based on the fractional Fourier transform
-
Z.J. Liu, J.M. Dai, X.G. Sun, and S.T. Liu Single phase encoding method based on the fractional Fourier transform Optik 121 2010 1748 1751
-
(2010)
Optik
, vol.121
, pp. 1748-1751
-
-
Liu, Z.J.1
Dai, J.M.2
Sun, X.G.3
Liu, S.T.4
-
18
-
-
79551526791
-
Linear canonical ambiguity function and linear canonical transform moments
-
H. Zhao, Q.W. Ran, J. Ma, and L.Y. Tan Linear canonical ambiguity function and linear canonical transform moments Optik 122 2011 540 543
-
(2011)
Optik
, vol.122
, pp. 540-543
-
-
Zhao, H.1
Ran, Q.W.2
Ma, J.3
Tan, L.Y.4
-
19
-
-
44349173784
-
Uncertainty principles in linear canonical transform domains and some of their implications in optics
-
A. Stern Uncertainty principles in linear canonical transform domains and some of their implications in optics J. Opt. Soc. Am. A 25 2008 647 652
-
(2008)
J. Opt. Soc. Am. A
, vol.25
, pp. 647-652
-
-
Stern, A.1
-
20
-
-
33646129911
-
Sampling of linear canonical transformed signals
-
A. Stern Sampling of linear canonical transformed signals Signal Process. 86 2006 1421 1425
-
(2006)
Signal Process.
, vol.86
, pp. 1421-1425
-
-
Stern, A.1
-
21
-
-
64249164703
-
On bandlimited signals associated with linear canonical transform
-
H. Zhao, Q.W. Ran, J. Ma, and L.Y. Tan On bandlimited signals associated with linear canonical transform IEEE Signal Process. Lett. 16 2009 343 345
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, pp. 343-345
-
-
Zhao, H.1
Ran, Q.W.2
Ma, J.3
Tan, L.Y.4
-
22
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
L.B. Almeida Product and convolution theorems for the fractional Fourier transform IEEE Signal Process. Lett. 4 1997 15 17
-
(1997)
IEEE Signal Process. Lett.
, vol.4
, pp. 15-17
-
-
Almeida, L.B.1
-
23
-
-
0032047886
-
A product and convolution theorem for the fractional Fourier transform
-
A.I. Zayed A product and convolution theorem for the fractional Fourier transform IEEE Signal Process. Lett. 4 1998 101 103
-
(1998)
IEEE Signal Process. Lett.
, vol.4
, pp. 101-103
-
-
Zayed, A.I.1
-
24
-
-
76749102797
-
Fractional convolution, fractional correlation and their translation invariance properties
-
R. Torres, P. Pellat-Finet, and Y. Torres Fractional convolution, fractional correlation and their translation invariance properties Signal Process. 90 2010 1976 1984
-
(2010)
Signal Process.
, vol.90
, pp. 1976-1984
-
-
Torres, R.1
Pellat-Finet, P.2
Torres, Y.3
-
25
-
-
84861724344
-
On convolution and product theorems for FRFT
-
DOI:10.1007/s11277-011-0235-5
-
A.K. Singh, and R. Saxena On convolution and product theorems for FRFT Wireless Pers. Commun. 2011 DOI:10.1007/s11277-011-0235-5
-
(2011)
Wireless Pers. Commun.
-
-
Singh, A.K.1
Saxena, R.2
-
26
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
X.G. Xia On bandlimited signals with fractional Fourier transform IEEE Signal Process. Lett. 3 1996 72 74
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, pp. 72-74
-
-
Xia, X.G.1
-
27
-
-
77952173338
-
Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform
-
D.Y. Wei, Q.W. Ran, and Y.M. Li Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform IEEE Signal Processing Lett. 17 2010 595 598
-
(2010)
IEEE Signal Processing Lett.
, vol.17
, pp. 595-598
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
-
28
-
-
80054885681
-
Sampling of fractional bandlimited signals associated with fractional Fourier transform
-
DOI: 10.1016/j.ijleo.2011.02.024
-
D.Y. Wei, Q.W. Ran, and Y.M. Li Sampling of fractional bandlimited signals associated with fractional Fourier transform Optik 2011 DOI: 10.1016/j.ijleo.2011.02.024
-
(2011)
Optik
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
|