메뉴 건너뛰기




Volumn 8, Issue 3, 2014, Pages 595-601

Modified correlation theorem for the linear canonical transform with representation transformation in quantum mechanics

Author keywords

Correlation theorem; Linear canonical transform; Quantum mechanical representation

Indexed keywords

FREQUENCY MODULATION; LINEAR TRANSFORMATIONS; QUANTUM THEORY; SPECTRAL DENSITY;

EID: 84894288331     PISSN: 18631703     EISSN: 18631711     Source Type: Journal    
DOI: 10.1007/s11760-013-0564-9     Document Type: Article
Times cited : (18)

References (47)
  • 1
    • 0008319946 scopus 로고    scopus 로고
    • Powers of transfer matrices determined by means of eigenfunctions
    • Alieva, T., Bastiaans, M. J.: Powers of transfer matrices determined by means of eigenfunctions. J. Opt. Soc. Am. A 16(10), 2413-2418 (1999).
    • (1999) J. Opt. Soc. Am. A , vol.16 , Issue.10 , pp. 2413-2418
    • Alieva, T.1    Bastiaans, M.J.2
  • 2
    • 36849112629 scopus 로고
    • Linear canonical transformations and their unitary representations
    • Moshinsky, M., Quesne, C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772-1783 (1771).
    • (1771) J. Math. Phys. , vol.12 , Issue.8 , pp. 1772-1783
    • Moshinsky, M.1    Quesne, C.2
  • 3
    • 0020102107 scopus 로고
    • First-order optics-a canonical operator representation: lossless systems
    • Nazarathy, M., Shamir, J.: First-order optics-a canonical operator representation: lossless systems. J. Opt. Soc. Am. 72(3), 356-364 (1982).
    • (1982) J. Opt. Soc. Am , vol.72 , Issue.3 , pp. 356-364
    • Nazarathy, M.1    Shamir, J.2
  • 4
    • 0035424885 scopus 로고    scopus 로고
    • Relations between fractional operations and time-frequency distributions, and their applications
    • Pei, S. C., Ding, J. J.: Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans. Signal Process. 49(8), 1638-1655 (2001).
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.8 , pp. 1638-1655
    • Pei, S.C.1    Ding, J.J.2
  • 6
    • 19944379483 scopus 로고    scopus 로고
    • Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms
    • Hennelly, B. M., Sheridan, J. T.: Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5), 917-927 (2005).
    • (2005) J. Opt. Soc. Am. A , vol.22 , Issue.5 , pp. 917-927
    • Hennelly, B.M.1    Sheridan, J.T.2
  • 7
    • 33646129911 scopus 로고    scopus 로고
    • Sampling of linear canonical transformed signals
    • Stern, A.: Sampling of linear canonical transformed signals. Signal Process. 86(7), 1421-1425 (2006).
    • (2006) Signal Process. , vol.86 , Issue.7 , pp. 1421-1425
    • Stern, A.1
  • 10
    • 0028546458 scopus 로고
    • The fractional Fourier transform and time-frequency representations
    • Almeida, L. B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084-3091 (1994).
    • (1994) IEEE Trans. Signal Process. , vol.42 , Issue.11 , pp. 3084-3091
    • Almeida, L.B.1
  • 11
    • 0031079193 scopus 로고    scopus 로고
    • Optimal filtering with linear canonical transformations
    • Barshan, B., Ozaktas, H. M., Kutay, M. A.: Optimal filtering with linear canonical transformations. Opt. Commun. 135(1-3), 32-36 (1997).
    • (1997) Opt. Commun. , vol.135 , Issue.1-3 , pp. 32-36
    • Barshan, B.1    Ozaktas, H.M.2    Kutay, M.A.3
  • 12
    • 33748045831 scopus 로고    scopus 로고
    • Signal separation using linear canonical and fractional Fourier transforms
    • Sharma, K. K., Joshi, S. D.: Signal separation using linear canonical and fractional Fourier transforms. Opt. Commun. 265(2), 454-460 (2006).
    • (2006) Opt. Commun. , vol.265 , Issue.2 , pp. 454-460
    • Sharma, K.K.1    Joshi, S.D.2
  • 13
    • 84881558038 scopus 로고    scopus 로고
    • Analysis of Dirichlet, generalized Hamming and Triangular window functions in the linear canonical transform domain
    • Goel, N., Singh, K.: Analysis of Dirichlet, generalized Hamming and Triangular window functions in the linear canonical transform domain. Signal Image Video Process. 7(5), 911-923 (2013).
    • (2013) Signal Image Video Process , vol.7 , Issue.5 , pp. 911-923
    • Goel, N.1    Singh, K.2
  • 14
    • 84893807546 scopus 로고    scopus 로고
    • Modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics
    • Goel, N., Singh, K.: Modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics. Appl. Math. Comput. Sci. 23(3), 685-695 (2013).
    • (2013) Appl. Math. Comput. Sci , vol.23 , Issue.3 , pp. 685-695
    • Goel, N.1    Singh, K.2
  • 16
    • 33749469804 scopus 로고    scopus 로고
    • Convolution theorem for the linear canonical transform and their applications
    • Deng, B., Tao, R., Wang, Y.: Convolution theorem for the linear canonical transform and their applications. Sci. China F 49(5), 592-603 (2006).
    • (2006) Sci. China F , vol.49 , Issue.5 , pp. 592-603
    • Deng, B.1    Tao, R.2    Wang, Y.3
  • 17
    • 33846571498 scopus 로고    scopus 로고
    • New sampling formulae related to linear canonical transform
    • Li, B. Z., Tao, R., Wang, Y.: New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983-990 (2007).
    • (2007) Signal Process , vol.87 , Issue.5 , pp. 983-990
    • Li, B.Z.1    Tao, R.2    Wang, Y.3
  • 19
    • 40149104667 scopus 로고    scopus 로고
    • Cases where the linear canonical transform of a signal has compact support or is band-limited
    • Healy, J. J., Sheridan, J. T.: Cases where the linear canonical transform of a signal has compact support or is band-limited. Opt. Lett. 33(3), 228-230 (2008).
    • (2008) Opt. Lett. , vol.33 , Issue.3 , pp. 228-230
    • Healy, J.J.1    Sheridan, J.T.2
  • 20
    • 54949091947 scopus 로고    scopus 로고
    • On sampling of band-limited signals associated with the linear canonical transform
    • Tao, R., Li, B. Z., Wang, Y.: On sampling of band-limited signals associated with the linear canonical transform. IEEE Trans. Signal Process. 56(11), 5454-5464 (2008).
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.11 , pp. 5454-5464
    • Tao, R.1    Li, B.Z.2    Wang, Y.3
  • 21
    • 33747799699 scopus 로고    scopus 로고
    • Closed-form discrete fractional and affine Fourier transforms
    • Pei, S. C., Ding, J. J.: Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 48(5), 1338-1353 (2000).
    • (2000) IEEE Trans. Signal Process. , vol.48 , Issue.5 , pp. 1338-1353
    • Pei, S.C.1    Ding, J.J.2
  • 22
    • 19944406134 scopus 로고    scopus 로고
    • Fast numerical algorithm for the linear canonical transform
    • Hennelly, B. M., Sheridan, J. T.: Fast numerical algorithm for the linear canonical transform. J. Opt. Soc. Am. A 22(5), 928-937 (2005).
    • (2005) J. Opt. Soc. Am. A , vol.22 , Issue.5 , pp. 928-937
    • Hennelly, B.M.1    Sheridan, J.T.2
  • 23
    • 57749196950 scopus 로고    scopus 로고
    • Sampling and discretization of the linear canonical transform
    • Healy, J. J., Sheridan, J. T.: Sampling and discretization of the linear canonical transform. Signal Process. 89(4), 641-648 (2009).
    • (2009) Signal Process. , vol.89 , Issue.4 , pp. 641-648
    • Healy, J.J.1    Sheridan, J.T.2
  • 24
    • 77955902651 scopus 로고    scopus 로고
    • Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product
    • Oktem, F. S., Ozaktas, H. M.: Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. J. Opt. Soc. Am. A 27(8), 1885-1895 (2010).
    • (2010) J. Opt. Soc. Am. A , vol.27 , Issue.8 , pp. 1885-1895
    • Oktem, F.S.1    Ozaktas, H.M.2
  • 25
    • 0028382656 scopus 로고
    • Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms
    • Ozaktas, H. M., Barshan, B., Mendlovic, D.: Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms. J. Opt. Soc. Am. A 11(2), 547-559 (1994).
    • (1994) J. Opt. Soc. Am. A , vol.11 , Issue.2 , pp. 547-559
    • Ozaktas, H.M.1    Barshan, B.2    Mendlovic, D.3
  • 26
    • 0030826059 scopus 로고    scopus 로고
    • Product and convolution theorems for the fractional Fourier transform
    • Almeida, L. B.: Product and convolution theorems for the fractional Fourier transform. IEEE Trans. Signal Process. Lett 4(1), 15-17 (1997).
    • (1997) IEEE Trans. Signal Process. Lett , vol.4 , Issue.1 , pp. 15-17
    • Almeida, L.B.1
  • 27
    • 0032047886 scopus 로고    scopus 로고
    • A product and convolution theorems for the fractional Fourier transform
    • Zayed, A. I.: A product and convolution theorems for the fractional Fourier transform. IEEE Trans. Signal Process. 5(4), 101-103 (1998).
    • (1998) IEEE Trans. Signal Process. , vol.5 , Issue.4 , pp. 101-103
    • Zayed, A.I.1
  • 28
    • 34547795735 scopus 로고    scopus 로고
    • Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to super resolution
    • Sharma, K. K., Joshi, S. D.: Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to super resolution. Opt. Commun. 278(1), 52-59 (2007).
    • (2007) Opt. Commun. , vol.278 , Issue.1 , pp. 52-59
    • Sharma, K.K.1    Joshi, S.D.2
  • 29
    • 84863077201 scopus 로고    scopus 로고
    • A convolution and correlation theorem for the linear canonical transform and its application
    • Wei, D., Ran, Q., Li, Y.: A convolution and correlation theorem for the linear canonical transform and its application. Circuits Syst. Signal Process. 31(1), 301-312 (2012).
    • (2012) Circuits Syst. Signal Process. , vol.31 , Issue.1 , pp. 301-312
    • Wei, D.1    Ran, Q.2    Li, Y.3
  • 30
    • 77952129659 scopus 로고    scopus 로고
    • A convolution and product theorem for the linear canonical transform
    • Wei, D., Ran, Q., Li, Y., Ma, J., Tan, L.: A convolution and product theorem for the linear canonical transform. IEEE Signal Process. Lett. 16(10), 853-856 (2009).
    • (2009) IEEE Signal Process. Lett. , vol.16 , Issue.10 , pp. 853-856
    • Wei, D.1    Ran, Q.2    Li, Y.3    Ma, J.4    Tan, L.5
  • 31
    • 84861724344 scopus 로고    scopus 로고
    • On convolution and product theorems for FRFT
    • Singh, A. K., Saxena, R.: On convolution and product theorems for FRFT. Wirel. Pers. Commun. 65(1), 189-201 (2012).
    • (2012) Wirel. Pers. Commun. , vol.65 , Issue.1 , pp. 189-201
    • Singh, A.K.1    Saxena, R.2
  • 32
    • 0035340022 scopus 로고    scopus 로고
    • Fractional convolution and correlation via operator methods and application to detection of linear FM signals
    • Akay, O., Boudreaux-Bartels, G. F.: Fractional convolution and correlation via operator methods and application to detection of linear FM signals. IEEE Trans. Signal Process. 49(5), 979-993 (2001).
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.5 , pp. 979-993
    • Akay, O.1    Boudreaux-Bartels, G.F.2
  • 33
    • 77957697766 scopus 로고
    • Optical fractional correlation: experimental results
    • Mendlovic, D., Bitran, Y., Dorsch, R. G., Lohmann, A. W.: Optical fractional correlation: experimental results. J. Opt. Soc. 12(8), 1665-1670 (1995).
    • (1995) J. Opt. Soc. , vol.12 , Issue.8 , pp. 1665-1670
    • Mendlovic, D.1    Bitran, Y.2    Dorsch, R.G.3    Lohmann, A.W.4
  • 35
    • 76749102797 scopus 로고    scopus 로고
    • Fractional convolution, fractional correlation and their translation invariance properties
    • Torres, R., Pellat-Finet, P., Torres, Y.: Fractional convolution, fractional correlation and their translation invariance properties. Signal Process. 90(6), 1976-1984 (2010).
    • (2010) Signal Process. , vol.90 , Issue.6 , pp. 1976-1984
    • Torres, R.1    Pellat-Finet, P.2    Torres, Y.3
  • 36
    • 0030145797 scopus 로고    scopus 로고
    • The generalized Fresnel transform and its applications to optics
    • James, D. F. V., Agarwal, G. S.: The generalized Fresnel transform and its applications to optics. Opt. Commun. 126(4-6), 207-212 (1996).
    • (1996) Opt. Commun , vol.126 , Issue.4-6 , pp. 207-212
    • James, D.F.V.1    Agarwal, G.S.2
  • 37
    • 0011712141 scopus 로고    scopus 로고
    • Extension of the Fresnel transform to ABCD systems
    • Palma, C., Bagini, V.: Extension of the Fresnel transform to ABCD systems. J. Opt. Soc. Am. 14(8), 1774-1779 (1997).
    • (1997) J. Opt. Soc. Am , vol.14 , Issue.8 , pp. 1774-1779
    • Palma, C.1    Bagini, V.2
  • 38
    • 0001484759 scopus 로고    scopus 로고
    • ABCD matrix formalism of fractional Fourier optics
    • Bernardo, L. M.: ABCD matrix formalism of fractional Fourier optics. Opt. Eng. 35(3), 732-740 (1996).
    • (1996) Opt. Eng. , vol.35 , Issue.3 , pp. 732-740
    • Bernardo, L.M.1
  • 39
    • 0001459151 scopus 로고
    • Lens-system diffraction integral written in terms of matrix optics
    • Collins, S. A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60(9), 1168-1174 (1970).
    • (1970) J. Opt. Soc. Am. , vol.60 , Issue.9 , pp. 1168-1174
    • Collins, S.A.1
  • 40
    • 0000010577 scopus 로고
    • Wigner distribution function and its application to first-order optics
    • Bastiaans, M. J.: Wigner distribution function and its application to first-order optics. J. Opt. Soc. Am. 69(12), 1710-1716 (1979).
    • (1979) J. Opt. Soc. Am. , vol.69 , Issue.12 , pp. 1710-1716
    • Bastiaans, M.J.1
  • 41
    • 0001201391 scopus 로고    scopus 로고
    • Extended fractional Fourier transforms
    • Hua, J., Liu, L., Li, G.: Extended fractional Fourier transforms. J. Opt. Soc. Am. 14(12), 3316-3322 (1997).
    • (1997) J. Opt. Soc. Am. , vol.14 , Issue.12 , pp. 3316-3322
    • Hua, J.1    Liu, L.2    Li, G.3
  • 42
    • 0028546432 scopus 로고
    • Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation
    • Abe, S., Sheridan, J. T.: Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19(22), 1801-1803 (1994).
    • (1994) Opt. Lett. , vol.19 , Issue.22 , pp. 1801-1803
    • Abe, S.1    Sheridan, J.T.2
  • 43
    • 21344493264 scopus 로고
    • Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach
    • Abe, S., Sheridan, J. T.: Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach. J. Phys. A 27, 4179-4187 (1994).
    • (1994) J. Phys. A , vol.27 , pp. 4179-4187
    • Abe, S.1    Sheridan, J.T.2
  • 44
    • 0037440480 scopus 로고    scopus 로고
    • New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform
    • Fan, H. Y., Yue, F.: New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform. Commun. Theor. Phys. 39(1), 97-100 (2003).
    • (2003) Commun. Theor. Phys. , vol.39 , Issue.1 , pp. 97-100
    • Fan, H.Y.1    Yue, F.2
  • 45
    • 56349123391 scopus 로고    scopus 로고
    • Convolution theorem of fractional Fourier transformation derived by representation transformation in quantum mechanics
    • Fan, H. Y., Ren, H., Lu, H. L.: Convolution theorem of fractional Fourier transformation derived by representation transformation in quantum mechanics. Commun. Theor. Phys. 50(3), 611-614 (2008).
    • (2008) Commun. Theor. Phys. , vol.50 , Issue.3 , pp. 611-614
    • Fan, H.Y.1    Ren, H.2    Lu, H.L.3
  • 47
    • 0015909910 scopus 로고
    • Convolution and correlation algebras
    • Borsellino, A., Poggio, T.: Convolution and correlation algebras. Kybernetik. 13(2), 113-122 (1973).
    • (1973) Kybernetik , vol.13 , Issue.2 , pp. 113-122
    • Borsellino, A.1    Poggio, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.