메뉴 건너뛰기




Volumn 8, Issue 3, 2014, Pages 433-442

Convolution, correlation, and sampling theorems for the offset linear canonical transform

Author keywords

Convolution theorem; Correlation theorem; Linear canonical transform; Multiplicative filtering; Offset linear canonical transform; Sampling theorem

Indexed keywords

CONVOLUTION; SIGNAL PROCESSING; TIME DOMAIN ANALYSIS;

EID: 84894272411     PISSN: 18631703     EISSN: 18631711     Source Type: Journal    
DOI: 10.1007/s11760-012-0342-0     Document Type: Article
Times cited : (76)

References (22)
  • 1
    • 0042575188 scopus 로고    scopus 로고
    • Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms
    • Pei S. C., Ding J. J.: Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. J. Opt. Soc. Am. A 20(3), 522-532 (2003).
    • (2003) J. Opt. Soc. Am. A , vol.20 , Issue.3 , pp. 522-532
    • Pei, S.C.1    Ding, J.J.2
  • 2
    • 38149006890 scopus 로고    scopus 로고
    • Sampling of compact signals in the offset linear canonical domain
    • Stern A.: Sampling of compact signals in the offset linear canonical domain. Signal Image Video Process. 1(4), 359-367 (2007).
    • (2007) Signal Image Video Process. , vol.1 , Issue.4 , pp. 359-367
    • Stern, A.1
  • 3
    • 34547107598 scopus 로고    scopus 로고
    • Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters
    • Pei S. C., Ding J. J.: Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters. In: IEEE Trans. Circuits Syst. I 54(7), 1599-1611 (2007).
    • (2007) In: IEEE Trans. Circuits Syst. I , vol.54 , Issue.7 , pp. 1599-1611
    • Pei, S.C.1    Ding, J.J.2
  • 4
    • 0028546432 scopus 로고
    • Optical operations on wave functions as the Abelian Subgroups of the special affine Fourier transformation
    • Abe S., Sheridan J. T.: Optical operations on wave functions as the Abelian Subgroups of the special affine Fourier transformation. Opt. Lett. 19(22), 1801-1803 (1994).
    • (1994) Opt. Lett. , vol.19 , Issue.22 , pp. 1801-1803
    • Abe, S.1    Sheridan, J.T.2
  • 5
    • 36849112629 scopus 로고
    • Linear canonical transformations and their unitary representations
    • Moshinsky M., Quesne C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772-1783 (1971).
    • (1971) J. Math. Phys. , vol.12 , Issue.8 , pp. 1772-1783
    • Moshinsky, M.1    Quesne, C.2
  • 6
    • 0035424885 scopus 로고    scopus 로고
    • Relations between fractional operations and time-frequency distributions,and their applications
    • Pei S. C., Ding J. J.: Relations between fractional operations and time-frequency distributions, and their applications. In: IEEE Trans. Signal Process. 49, 1638-1655 (2001).
    • (2001) In: IEEE Trans. Signal Process. , vol.49 , pp. 1638-1655
    • Pei, S.C.1    Ding, J.J.2
  • 7
    • 33748045831 scopus 로고    scopus 로고
    • Signal separation using linear canonical and fractional Fourier transforms
    • Sharma K. K., Joshi S. D.: Signal separation using linear canonical and fractional Fourier transforms. Opt. Commun. 265(2), 454-460 (2006).
    • (2006) Opt. Commun. , vol.265 , Issue.2 , pp. 454-460
    • Sharma, K.K.1    Joshi, S.D.2
  • 8
    • 0028546458 scopus 로고
    • The fractional Fourier transform and time-frequency representations
    • Almeida L. B.: The fractional Fourier transform and time-frequency representations. In: IEEE Trans. Signal Process. 42(11), 3084-3091 (1994).
    • (1994) In: IEEE Trans. Signal Process. , vol.42 , Issue.11 , pp. 3084-3091
    • Almeida, L.B.1
  • 9
    • 0030145797 scopus 로고    scopus 로고
    • The generalized Fresnel transform and its applications to optics
    • James D. F. V., Agarwal G. S.: The generalized Fresnel transform and its applications to optics. Opt. Commun. 126(5), 207-212 (1996).
    • (1996) Opt. Commun. , vol.126 , Issue.5 , pp. 207-212
    • James, D.F.V.1    Agarwal, G.S.2
  • 11
    • 0035340022 scopus 로고    scopus 로고
    • Fractional convolution and correlation via operator methods and application to detection of linear FM signals
    • Akay O., Boudreaux B. G. F.: Fractional convolution and correlation via operator methods and application to detection of linear FM signals. In: IEEE Trans. Signal Process. 49, 979-993 (2001).
    • (2001) In: IEEE Trans. Signal Process. , vol.49 , pp. 979-993
    • Akay, O.1    Boudreaux, B.G.F.2
  • 12
    • 76749102797 scopus 로고    scopus 로고
    • Fractional convolution, fractional correlation and their translation invariance properties
    • Torres R., Pellat F. P., Torres Y.: Fractional convolution, fractional correlation and their translation invariance properties. Signal Process. 90, 1976-1984 (2010).
    • (2010) Signal Process. , vol.90 , pp. 1976-1984
    • Torres, R.1    Pellat, F.P.2    Torres, Y.3
  • 13
    • 0030826059 scopus 로고    scopus 로고
    • Product and convolution theorems for the fractional Fourier transform
    • Almeida L. B.: Product and convolution theorems for the fractional Fourier transform. In: IEEE Trans. Signal Proc. Lett. 4, 15-17 (1997).
    • (1997) In: IEEE Trans. Signal Proc. Lett. , vol.4 , pp. 15-17
    • Almeida, L.B.1
  • 14
    • 0032047886 scopus 로고    scopus 로고
    • A product and convoution theorems for the fractional Fourier transform
    • Zayed A. I.: A product and convoution theorems for the fractional Fourier transform. In: IEEE Trans. Signal Proc. Lett. 5, 101-103 (1998).
    • (1998) In: IEEE Trans. Signal Proc. Lett. , vol.5 , pp. 101-103
    • Zayed, A.I.1
  • 15
    • 33749469804 scopus 로고    scopus 로고
    • Convolution theorems for the linear canonical transform and their applications
    • Deng B., Tao R., Wang Y.: Convolution theorems for the linear canonical transform and their applications. Sci. China (Ser. E Information Science) 49(5), 592-603 (2006).
    • (2006) Sci. China (Ser.E Information Science) , vol.49 , Issue.5 , pp. 592-603
    • Deng, B.1    Tao, R.2    Wang, Y.3
  • 16
    • 77952129659 scopus 로고    scopus 로고
    • A convolution and product theorem for the linear canonical transform
    • Wei D. Y., Ran Q. W., Li Y. M., Ma J., Tan L. Y.: A convolution and product theorem for the linear canonical transform. In: IEEE Signal Process. Lett. 16(10), 853-856 (2009).
    • (2009) In: IEEE Signal Process. Lett. , vol.16 , Issue.10 , pp. 853-856
    • Wei, D.Y.1    Ran, Q.W.2    Li, Y.M.3    Ma, J.4    Tan, L.Y.5
  • 17
    • 84863077201 scopus 로고    scopus 로고
    • A convolution and correlation theo- rem for the linear canonical transform and its application
    • doi: 10. 1007/s00034-011-9319-4
    • Wei, D. Y., Ran, Q. W., Li, Y. M.: A convolution and correlation theo- rem for the linear canonical transform and its application. Circuits Syst. Signal Process. (2011). doi: 10. 1007/s00034-011-9319-4.
    • (2011) Circuits Syst. Signal Process
    • Wei, D.Y.1    Ran, Q.W.2    Li, Y.M.3
  • 19
    • 0141892675 scopus 로고    scopus 로고
    • Sampling and series expansion theorems for fractional Fourier and other transform
    • Candan C., Ozaktas H. M.: Sampling and series expansion theorems for fractional Fourier and other transform. Signal Process. 83(11), 2455-2457 (2003).
    • (2003) Signal Process. , vol.83 , Issue.11 , pp. 2455-2457
    • Candan, C.1    Ozaktas, H.M.2
  • 21
    • 33846571498 scopus 로고    scopus 로고
    • New sampling formulae related to linear canonical transform
    • Li B. Z., Tao R., Wang Y.: New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983-990 (2007).
    • (2007) Signal Process. , vol.87 , Issue.5 , pp. 983-990
    • Li, B.Z.1    Tao, R.2    Wang, Y.3
  • 22
    • 33646129911 scopus 로고    scopus 로고
    • Sampling of linear canonical transformed signals
    • Stern A.: Sampling of linear canonical transformed signals. Signal Process. 86(7), 1421-1425 (2006).
    • (2006) Signal Process. , vol.86 , Issue.7 , pp. 1421-1425
    • Stern, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.