-
1
-
-
0042575188
-
Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms
-
Pei S. C., Ding J. J.: Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. J. Opt. Soc. Am. A 20(3), 522-532 (2003).
-
(2003)
J. Opt. Soc. Am. A
, vol.20
, Issue.3
, pp. 522-532
-
-
Pei, S.C.1
Ding, J.J.2
-
2
-
-
38149006890
-
Sampling of compact signals in the offset linear canonical domain
-
Stern A.: Sampling of compact signals in the offset linear canonical domain. Signal Image Video Process. 1(4), 359-367 (2007).
-
(2007)
Signal Image Video Process.
, vol.1
, Issue.4
, pp. 359-367
-
-
Stern, A.1
-
3
-
-
34547107598
-
Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters
-
Pei S. C., Ding J. J.: Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters. In: IEEE Trans. Circuits Syst. I 54(7), 1599-1611 (2007).
-
(2007)
In: IEEE Trans. Circuits Syst. I
, vol.54
, Issue.7
, pp. 1599-1611
-
-
Pei, S.C.1
Ding, J.J.2
-
4
-
-
0028546432
-
Optical operations on wave functions as the Abelian Subgroups of the special affine Fourier transformation
-
Abe S., Sheridan J. T.: Optical operations on wave functions as the Abelian Subgroups of the special affine Fourier transformation. Opt. Lett. 19(22), 1801-1803 (1994).
-
(1994)
Opt. Lett.
, vol.19
, Issue.22
, pp. 1801-1803
-
-
Abe, S.1
Sheridan, J.T.2
-
5
-
-
36849112629
-
Linear canonical transformations and their unitary representations
-
Moshinsky M., Quesne C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772-1783 (1971).
-
(1971)
J. Math. Phys.
, vol.12
, Issue.8
, pp. 1772-1783
-
-
Moshinsky, M.1
Quesne, C.2
-
6
-
-
0035424885
-
Relations between fractional operations and time-frequency distributions,and their applications
-
Pei S. C., Ding J. J.: Relations between fractional operations and time-frequency distributions, and their applications. In: IEEE Trans. Signal Process. 49, 1638-1655 (2001).
-
(2001)
In: IEEE Trans. Signal Process.
, vol.49
, pp. 1638-1655
-
-
Pei, S.C.1
Ding, J.J.2
-
7
-
-
33748045831
-
Signal separation using linear canonical and fractional Fourier transforms
-
Sharma K. K., Joshi S. D.: Signal separation using linear canonical and fractional Fourier transforms. Opt. Commun. 265(2), 454-460 (2006).
-
(2006)
Opt. Commun.
, vol.265
, Issue.2
, pp. 454-460
-
-
Sharma, K.K.1
Joshi, S.D.2
-
8
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
Almeida L. B.: The fractional Fourier transform and time-frequency representations. In: IEEE Trans. Signal Process. 42(11), 3084-3091 (1994).
-
(1994)
In: IEEE Trans. Signal Process.
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.B.1
-
9
-
-
0030145797
-
The generalized Fresnel transform and its applications to optics
-
James D. F. V., Agarwal G. S.: The generalized Fresnel transform and its applications to optics. Opt. Commun. 126(5), 207-212 (1996).
-
(1996)
Opt. Commun.
, vol.126
, Issue.5
, pp. 207-212
-
-
James, D.F.V.1
Agarwal, G.S.2
-
11
-
-
0035340022
-
Fractional convolution and correlation via operator methods and application to detection of linear FM signals
-
Akay O., Boudreaux B. G. F.: Fractional convolution and correlation via operator methods and application to detection of linear FM signals. In: IEEE Trans. Signal Process. 49, 979-993 (2001).
-
(2001)
In: IEEE Trans. Signal Process.
, vol.49
, pp. 979-993
-
-
Akay, O.1
Boudreaux, B.G.F.2
-
12
-
-
76749102797
-
Fractional convolution, fractional correlation and their translation invariance properties
-
Torres R., Pellat F. P., Torres Y.: Fractional convolution, fractional correlation and their translation invariance properties. Signal Process. 90, 1976-1984 (2010).
-
(2010)
Signal Process.
, vol.90
, pp. 1976-1984
-
-
Torres, R.1
Pellat, F.P.2
Torres, Y.3
-
13
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
Almeida L. B.: Product and convolution theorems for the fractional Fourier transform. In: IEEE Trans. Signal Proc. Lett. 4, 15-17 (1997).
-
(1997)
In: IEEE Trans. Signal Proc. Lett.
, vol.4
, pp. 15-17
-
-
Almeida, L.B.1
-
14
-
-
0032047886
-
A product and convoution theorems for the fractional Fourier transform
-
Zayed A. I.: A product and convoution theorems for the fractional Fourier transform. In: IEEE Trans. Signal Proc. Lett. 5, 101-103 (1998).
-
(1998)
In: IEEE Trans. Signal Proc. Lett.
, vol.5
, pp. 101-103
-
-
Zayed, A.I.1
-
15
-
-
33749469804
-
Convolution theorems for the linear canonical transform and their applications
-
Deng B., Tao R., Wang Y.: Convolution theorems for the linear canonical transform and their applications. Sci. China (Ser. E Information Science) 49(5), 592-603 (2006).
-
(2006)
Sci. China (Ser.E Information Science)
, vol.49
, Issue.5
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
16
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
Wei D. Y., Ran Q. W., Li Y. M., Ma J., Tan L. Y.: A convolution and product theorem for the linear canonical transform. In: IEEE Signal Process. Lett. 16(10), 853-856 (2009).
-
(2009)
In: IEEE Signal Process. Lett.
, vol.16
, Issue.10
, pp. 853-856
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
Ma, J.4
Tan, L.Y.5
-
17
-
-
84863077201
-
A convolution and correlation theo- rem for the linear canonical transform and its application
-
doi: 10. 1007/s00034-011-9319-4
-
Wei, D. Y., Ran, Q. W., Li, Y. M.: A convolution and correlation theo- rem for the linear canonical transform and its application. Circuits Syst. Signal Process. (2011). doi: 10. 1007/s00034-011-9319-4.
-
(2011)
Circuits Syst. Signal Process
-
-
Wei, D.Y.1
Ran, Q.W.2
Li, Y.M.3
-
19
-
-
0141892675
-
Sampling and series expansion theorems for fractional Fourier and other transform
-
Candan C., Ozaktas H. M.: Sampling and series expansion theorems for fractional Fourier and other transform. Signal Process. 83(11), 2455-2457 (2003).
-
(2003)
Signal Process.
, vol.83
, Issue.11
, pp. 2455-2457
-
-
Candan, C.1
Ozaktas, H.M.2
-
21
-
-
33846571498
-
New sampling formulae related to linear canonical transform
-
Li B. Z., Tao R., Wang Y.: New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983-990 (2007).
-
(2007)
Signal Process.
, vol.87
, Issue.5
, pp. 983-990
-
-
Li, B.Z.1
Tao, R.2
Wang, Y.3
-
22
-
-
33646129911
-
Sampling of linear canonical transformed signals
-
Stern A.: Sampling of linear canonical transformed signals. Signal Process. 86(7), 1421-1425 (2006).
-
(2006)
Signal Process.
, vol.86
, Issue.7
, pp. 1421-1425
-
-
Stern, A.1
|