-
1
-
-
77958407025
-
The fractional Fourier transform and its application to quantum mechanics
-
573153 0434.42014 10.1093/imamat/25.3.241
-
V. Namias 1980 The fractional Fourier transform and its application to quantum mechanics Journal Institute of Mathematics and Applications 25 241 265 573153 0434.42014 10.1093/imamat/25.3.241
-
(1980)
Journal Institute of Mathematics and Applications
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
2
-
-
20344363176
-
Fractional Fourier transform: A novel tool for signal processing
-
R. Saxena K. Singh 2005 Fractional Fourier transform: A novel tool for signal processing Journal Indian Institute of Science 85 1 11 26 (Pubitemid 40785331)
-
(2005)
Journal of the Indian Institute of Science
, vol.85
, Issue.1
, pp. 11-26
-
-
Saxena, R.1
Singh, K.2
-
3
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
10.1109/78.330368
-
L. B. Almeida 1994 The fractional Fourier transform and time-frequency representations IEEE Transactions of Signal Processing 42 3084 3091 10.1109/78.330368
-
(1994)
IEEE Transactions of Signal Processing
, vol.42
, pp. 3084-3091
-
-
Almeida, L.B.1
-
5
-
-
34547404186
-
Fractional Fourier domain analysis of decimation and interpolation
-
2376293 1131.42004 10.1007/s11432-007-0040-7
-
X. Y. Meng R. Tao Y. Wang 2007 Fractional Fourier domain analysis of decimation and interpolation Science in China Series F: Information Sciences 50 4 521 538 2376293 1131.42004 10.1007/s11432-007-0040-7
-
(2007)
Science in China Series F: Information Sciences
, vol.50
, Issue.4
, pp. 521-538
-
-
Meng, X.Y.1
Tao, R.2
Wang, Y.3
-
6
-
-
76649128729
-
Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation
-
2642201 1185.81038 10.1007/s11232-009-0156-6
-
S.-G. Liu H.-Y. Fan 2009 Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation Theoretical and Mathematical Physics 161 3 1714 1722 2642201 1185.81038 10.1007/s11232-009-0156-6
-
(2009)
Theoretical and Mathematical Physics
, vol.161
, Issue.3
, pp. 1714-1722
-
-
Liu, S.-G.1
Fan, H.-Y.2
-
7
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
L. B. Almeida 1997 Product and convolution theorems for the fractional Fourier transform IEEE Signal Processing Letters 4 1 15 17 1425566 10.1109/97.551689 (Pubitemid 127554931)
-
(1997)
IEEE Signal Processing Letters
, vol.4
, Issue.1
, pp. 15-17
-
-
Almeida, L.B.1
-
8
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
A. I. Zayed 1998 A convolution and product theorem for the fractional Fourier transform IEEE Signal Processing Letters 5 4 101 103 1434835 10.1109/97.664179 (Pubitemid 128556806)
-
(1998)
IEEE Signal Processing Letters
, vol.5
, Issue.4
, pp. 101-103
-
-
Zayed, A.I.1
-
9
-
-
33749469804
-
Convolution theorems for the linear canonical transform and their applications
-
DOI 10.1007/s11432-006-2016-4
-
D. Bing T. Ran W. Yue 2006 Convolution theorems for the linear canonical transform and their applications Science in China Series F: Information Sciences 49 5 592 603 2316632 10.1007/s11432-006-2016-4 (Pubitemid 44521513)
-
(2006)
Science in China, Series F: Information Sciences
, vol.49
, Issue.5
, pp. 592-603
-
-
Deng, B.1
Tao, R.2
Wang, Y.3
-
10
-
-
77952129659
-
A convolution and product theorem for the linear canonical transform
-
10.1109/LSP.2009.2026107
-
D. Wei Q. Ran Y. Li J. Ma L. Tan 2009 A convolution and product theorem for the linear canonical transform IEEE Signal Processing Letters 16 10 853 856 10.1109/LSP.2009.2026107
-
(2009)
IEEE Signal Processing Letters
, vol.16
, Issue.10
, pp. 853-856
-
-
Wei, D.1
Ran, Q.2
Li, Y.3
Ma, J.4
Tan, L.5
|