메뉴 건너뛰기




Volumn 6, Issue 4, 2015, Pages 848-865

Effects of semantic features on machine learning-based drug name recognition systems: Word embeddings vs. Manually constructed dictionaries

Author keywords

Biomedical texts; Drug information extraction; Drug name recognition; Word embeddings

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; RANDOM PROCESSES; SEMANTICS;

EID: 84952888097     PISSN: None     EISSN: 20782489     Source Type: Journal    
DOI: 10.3390/info6040848     Document Type: Article
Times cited : (62)

References (61)
  • 1
    • 51249088163 scopus 로고    scopus 로고
    • Drug name recognition and classification in biomedical texts: A case study outlining approaches underpinning automated systems
    • Segura-Bedmar, I.; Martínez, P.; Segura-Bedmar, M. Drug name recognition and classification in biomedical texts: A case study outlining approaches underpinning automated systems. Drug Discov. Today 2008, 13, 816-823.
    • (2008) Drug Discov. Today , vol.13 , pp. 816-823
    • Segura-Bedmar, I.1    Martínez, P.2    Segura-Bedmar, M.3
  • 4
    • 84901498101 scopus 로고    scopus 로고
    • Drug name recognition in biomedical texts: A machine-learning-based method
    • He, L.; Yang, Z.; Lin, H.; Li, Y. Drug name recognition in biomedical texts: A machine-learning-based method. Drug Discov. Today 2014, 19, 610-617.
    • (2014) Drug Discov. Today , vol.19 , pp. 610-617
    • He, L.1    Yang, Z.2    Lin, H.3    Li, Y.4
  • 6
    • 84980583466 scopus 로고    scopus 로고
    • UTurku: Drug named entity detection and drug-drug interaction extraction using SVM classification and domain knowledge
    • Atlanta, GA, USA, 14-15 June
    • Björe, J.; Kaewphan, S.; Salakoski, T. UTurku: Drug named entity detection and drug-drug interaction extraction using SVM classification and domain knowledge. In Proceedings of the 7th International Workshop on Semantic Evaluation, Atlanta, GA, USA, 14-15 June 2013; pp. 651-659.
    • (2013) In Proceedings of the 7th International Workshop on Semantic Evaluation , pp. 651-659
    • Björe, J.1    Kaewphan, S.2    Salakoski, T.3
  • 10
    • 33947305118 scopus 로고    scopus 로고
    • Identifying gene and protein mentions in text using conditional random fields
    • McDonald, R.; Pereira, F. Identifying gene and protein mentions in text using conditional random fields. BMC Bioinform. 2005, 6 (Suppl. 1), S6.
    • (2005) BMC Bioinform , vol.6 , pp. S6
    • McDonald, R.1    Pereira, F.2
  • 11
    • 78149487508 scopus 로고    scopus 로고
    • High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge
    • Patrick, J.; Li, M. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J. Am. Med. Inform. Assoc. 2010, 17, 524-527.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , pp. 524-527
    • Patrick, J.1    Li, M.2
  • 12
    • 80053271549 scopus 로고    scopus 로고
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
    • Jiang, M.; Chen, Y.; Liu, M.; Rosenbloom, S.T.; Mani, S.; Denny, J.C.; Xu, H. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J. Am. Med. Inform. Assoc. 2011, 18, 601-606.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , pp. 601-606
    • Jiang, M.1    Chen, Y.2    Liu, M.3    Rosenbloom, S.T.4    Mani, S.5    Denny, J.C.6    Xu, H.7
  • 15
    • 84897866034 scopus 로고    scopus 로고
    • Evaluating word representation features in biomedical named entity recognition tasks
    • Tang, B.; Cao, H.; Wang, X.; Chen, Q.; Xu, H. Evaluating word representation features in biomedical named entity recognition tasks. Biomed. Res. Int. 2014, 2014, doi:10.1155/2014/240403.
    • (2014) Biomed. Res. Int. , pp. 2014
    • Tang, B.1    Cao, H.2    Wang, X.3    Chen, Q.4    Xu, H.5
  • 23
    • 84925619870 scopus 로고    scopus 로고
    • tmChem: A high performance approach for chemical named entity recognition and normalization
    • Leaman, R.; Wei, C.; Lu, Z. tmChem: A high performance approach for chemical named entity recognition and normalization. J. Cheminformatics 2015, 7 (Suppl. 1), S3.
    • (2015) J. Cheminformatics , vol.7 , pp. S3
    • Leaman, R.1    Wei, C.2    Lu, Z.3
  • 24
    • 84946125762 scopus 로고    scopus 로고
    • A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
    • Tang, B.; Feng, Y.; Wang, X.; Wu, Y.; Zhang, Y.; Jiang, M.; Wang, J. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. J. Cheminformatics 2015, 7 (Suppl. 1), S8.
    • (2015) J. Cheminformatics , vol.7 , pp. S8
    • Tang, B.1    Feng, Y.2    Wang, X.3    Wu, Y.4    Zhang, Y.5    Jiang, M.6    Wang, J.7
  • 25
    • 84925635743 scopus 로고    scopus 로고
    • CHEMDNER system with mixed conditional random fields and multi-scale word clustering
    • Lu, Y.; Ji, D.; Yao, X.; Wei, X.; Liang, X. CHEMDNER system with mixed conditional random fields and multi-scale word clustering. J. Cheminformatics 2015, 7 (Suppl. 1), S4.
    • (2015) J. Cheminformatics , vol.7 , pp. S4
    • Lu, Y.1    Ji, D.2    Yao, X.3    Wei, X.4    Liang, X.5
  • 26
    • 84946131442 scopus 로고    scopus 로고
    • Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics
    • Batista-Navarro, R.; Rak, R.; Ananiadou, S. Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics. J. Cheminformatics 2015, 7 (Suppl. 1), S6.
    • (2015) J. Cheminformatics , vol.7 , pp. S6
    • Batista-Navarro, R.1    Rak, R.2    Ananiadou, S.3
  • 27
    • 84946128141 scopus 로고    scopus 로고
    • A document processing pipeline for annotating chemical entities in scientific documents
    • Campos, D.; Matos, S.; Oliveira, J. A document processing pipeline for annotating chemical entities in scientific documents. J. Cheminformatics 2015, 7 (Suppl. 1), S7.
    • (2015) J. Cheminformatics , vol.7 , pp. S7
    • Campos, D.1    Matos, S.2    Oliveira, J.3
  • 29
    • 84860595742 scopus 로고    scopus 로고
    • Recognition of medication information from discharge summaries using ensembles of classifiers
    • Doan, S.; Collier, N.; Xu, H.; Duy, P.; Phuong, T. Recognition of medication information from discharge summaries using ensembles of classifiers. BMC Med. Inform. Decis. Mak. 2012, 12, doi:10.1186/1472-6947-12-36.
    • (2012) BMC Med. Inform. Decis. Mak. , vol.12
    • Doan, S.1    Collier, N.2    Xu, H.3    Duy, P.4    Phuong, T.5
  • 30
    • 84870669801 scopus 로고    scopus 로고
    • A cascade of classifiers for extracting medication information from discharge summaries
    • Halgrim, S.; Xia, F.; Solti, I.; Cadag, E.; Uzuner, Ö. A cascade of classifiers for extracting medication information from discharge summaries. J. Biomed. Semant. 2011, 2 (Suppl. 3), S2.
    • (2011) J. Biomed. Semant. , vol.2 , pp. S2
    • Halgrim, S.1    Xia, F.2    Solti, I.3    Cadag, E.4    Uzuner, Ö.5
  • 31
    • 84949514782 scopus 로고    scopus 로고
    • Identifying adverse drug event information in clinical notes with distributional semantic representations of context
    • Henriksson, A.; Kvist, M.; Dalianis, H.; Duneld, M. Identifying adverse drug event information in clinical notes with distributional semantic representations of context. J. Biomed. Inform. 2015, 57, 333-349.
    • (2015) J. Biomed. Inform. , vol.57 , pp. 333-349
    • Henriksson, A.1    Kvist, M.2    Dalianis, H.3    Duneld, M.4
  • 32
    • 84902545076 scopus 로고    scopus 로고
    • Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study
    • Skeppstedt, M.; Kvist, M.; Nilsson, G.; Dalianis, H. Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study. J. Biomed. Inform. 2014, 49, 148-158.
    • (2014) J. Biomed. Inform. , vol.49 , pp. 148-158
    • Skeppstedt, M.1    Kvist, M.2    Nilsson, G.3    Dalianis, H.4
  • 34
    • 80053431219 scopus 로고    scopus 로고
    • An introduction to latent semantic analysis
    • Landauer, T.; Foltz, P.; Laham, D. An introduction to latent semantic analysis. Discourse Process. 1998, 25, 259-284.
    • (1998) Discourse Process , vol.25 , pp. 259-284
    • Landauer, T.1    Foltz, P.2    Laham, D.3
  • 36
    • 84856376731 scopus 로고    scopus 로고
    • Enhancing clinical concept extraction with distributional semantics
    • Jonnalagadda, S.; Cohen, T.; Wub, S.; Gonzalez, G. Enhancing clinical concept extraction with distributional semantics. J. Biomed. Inform. 2012, 45, 129-140.
    • (2012) J. Biomed. Inform. , vol.45 , pp. 129-140
    • Jonnalagadda, S.1    Cohen, T.2    Wub, S.3    Gonzalez, G.4
  • 42
    • 84952910220 scopus 로고    scopus 로고
    • (accessed on 11 December 2015)
    • Natural Language Toolkit. Available online: http://www.nltk.org/ (accessed on 11 December 2015).
  • 45
    • 85121365374 scopus 로고    scopus 로고
    • Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons
    • Geneva, Switzerland, 23-27 August
    • McCallum, A.; Li, W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In Proceedings of the 7th Conference on Natural Language Learning, Geneva, Switzerland, 23-27 August 2003; pp. 188-191.
    • (2003) In Proceedings of the 7th Conference on Natural Language Learning , pp. 188-191
    • McCallum, A.1    Li, W.2
  • 46
    • 33947615175 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
    • Sutton, C.; McCallum, A.; Rohanimanesh, K. Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. J. Mach. Learn. Res. 2007, 8, 693-723.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 693-723
    • Sutton, C.1    McCallum, A.2    Rohanimanesh, K.3
  • 48
    • 84952903481 scopus 로고    scopus 로고
    • (accessed on 11 December 2015)
    • CRFsuite. Available online: http://www.chokkan.org/software/crfsuite/ (accessed on 11 December 2015).
  • 49
    • 84952949242 scopus 로고    scopus 로고
    • (accessed on 11 December 2015)
    • word2vec. Available online: https://code.google.com/p/word2vec/ (accessed on 11 December 2015).
  • 50
    • 84952935138 scopus 로고    scopus 로고
    • (accessed on 11 December 2015)
    • GENIA Tagger. Available online: http://www.nactem.ac.uk/tsujii/GENIA/tagger/ (accessed on 11 December 2015).
  • 51
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The penn treebank
    • Marcus, M.; Santorini, B.; Marcinkiewicz, M. Building a large annotated corpus of English: The penn treebank. Comput. Linguist. 1993, 19, 313-330.
    • (1993) Comput. Linguist. , vol.19 , pp. 313-330
    • Marcus, M.1    Santorini, B.2    Marcinkiewicz, M.3
  • 52
    • 85109864082 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2000 shared task: Chunking
    • Lisbon, Portugal, 13-14 September
    • Sang, E.; Buchholz, S. Introduction to the CoNLL-2000 shared task: Chunking. In Proceedings of the CoNLL-2000, Lisbon, Portugal, 13-14 September 2000; pp. 127-132.
    • (2000) In Proceedings of the CoNLL-2000 , pp. 127-132
    • Sang, E.1    Buchholz, S.2
  • 53
    • 84952910763 scopus 로고    scopus 로고
    • (accessed on 11 December 2015)
    • DrugBank. Available online: http://www.drugbank.ca/downloads (accessed on 11 December 2015).
  • 54
    • 84952913819 scopus 로고    scopus 로고
    • (accessed on 11 December 2015)
    • Drugs@FDA Data Files. Available online: http://www.fda.gov/Drugs/InformationOnDrugs/ ucm079750.htm (accessed on 11 December 2015).
  • 55
    • 84952907380 scopus 로고    scopus 로고
    • (MEDLINE(/PubMed( including OLDMEDLINE)
    • Leasing Journal Citations (MEDLINE®/PubMed® including OLDMEDLINE). Available online: http://www.nlm.nih.gov/databases/journal.html (accessed on 11 December 2015).
  • 57
    • 84889588244 scopus 로고    scopus 로고
    • WBI-NER: The impact of domain-specific features on the performance of identifying and classifying mentions of drugs
    • Atlanta, GA, USA, 14-15 June
    • Rocktäschel, T.; Huber, T.; Weidlich, M.; Leser, U. WBI-NER: The impact of domain-specific features on the performance of identifying and classifying mentions of drugs. In Proceedings of the 7th International Workshop on Semantic Evaluation, Atlanta, GA, USA, 14-15 June 2013; pp. 356-363.
    • (2013) In Proceedings of the 7th International Workshop on Semantic Evaluation , pp. 356-363
    • Rocktäschel, T.1    Huber, T.2    Weidlich, M.3    Leser, U.4
  • 61
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition
    • Edmonton, Canada, 31 May-1 June
    • Sang, E.; Meulder, F. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the 7th Conference on Natural Language Learning, Edmonton, Canada, 31 May-1 June 2003; pp. 142-147.
    • (2003) In Proceedings of the 7th Conference on Natural Language Learning , pp. 142-147
    • Sang, E.1    Meulder, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.