메뉴 건너뛰기




Volumn 19, Issue 5, 2014, Pages 610-617

Drug name recognition in biomedical texts: A machine-learning-based method

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; COMPUTER PROGRAM; DATA EXTRACTION; DRUG INFORMATION; MACHINE LEARNING; PERFORMANCE; REVIEW; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; BOOK; CLASSIFICATION; HUMAN; MEDICAL RESEARCH; PROCEDURES;

EID: 84901498101     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2013.10.006     Document Type: Review
Times cited : (33)

References (35)
  • 1
    • 16244398393 scopus 로고    scopus 로고
    • Text mining: Getting more value from literature resources
    • R. Hale Text mining: getting more value from literature resources Drug Discov. Today 10 2005 377 379
    • (2005) Drug Discov. Today , vol.10 , pp. 377-379
    • Hale, R.1
  • 2
    • 51249088163 scopus 로고    scopus 로고
    • Drug name recognition and classification in biomedical texts: A case study outlining approaches underpinning automated systems
    • I. Segura-Bedmar et al. Drug name recognition and classification in biomedical texts: a case study outlining approaches underpinning automated systems Drug Discov. Today 13 2008 816 823
    • (2008) Drug Discov. Today , vol.13 , pp. 816-823
    • Segura-Bedmar, I.1
  • 3
    • 19644390698 scopus 로고    scopus 로고
    • Text mining for drug discovery
    • accessed October 2013
    • Fickett, J. and Hayes, W. (2004) Text mining for drug discovery. European Pharmaceutical Contractor Available at: http://www.samedanltd.com/?mod= magazine&id=11&page=article&issid=12&pid=794&post, accessed October 2013
    • (2004) European Pharmaceutical Contractor
    • Fickett, J.1    Hayes, W.2
  • 6
    • 8444223103 scopus 로고    scopus 로고
    • Use of morphological analysis in protein name recognition
    • K. Yamamotoa et al. Use of morphological analysis in protein name recognition J. Biomed. Inf. 37 2004 471 482
    • (2004) J. Biomed. Inf. , vol.37 , pp. 471-482
    • Yamamotoa, K.1
  • 7
    • 8444232801 scopus 로고    scopus 로고
    • Improving the performance of dictionary-based approaches in protein name recognition
    • Y. Tsuruokazy, and J. Tsujii Improving the performance of dictionary-based approaches in protein name recognition J. Biomed. Inf. 37 2004 461 470
    • (2004) J. Biomed. Inf. , vol.37 , pp. 461-470
    • Tsuruokazy, Y.1    Tsujii, J.2
  • 8
    • 30744457935 scopus 로고    scopus 로고
    • Gene/protein name recognition based on support vector machine using dictionary as features
    • T. Mitsumori et al. Gene/protein name recognition based on support vector machine using dictionary as features BMC Bioinformatics 6 Suppl. 1 2005 8
    • (2005) BMC Bioinformatics , vol.6 , Issue.SUPPL. 1 , pp. 8
    • Mitsumori, T.1
  • 9
    • 30344472426 scopus 로고    scopus 로고
    • BioThesaurus: A web-based thesaurus of protein and gene names
    • H. Liu et al. BioThesaurus: a web-based thesaurus of protein and gene names Bioinformatics 22 2006 103 105
    • (2006) Bioinformatics , vol.22 , pp. 103-105
    • Liu, H.1
  • 10
    • 30744459862 scopus 로고    scopus 로고
    • What makes a gene name? Named entity recognition in the biomedical literature
    • U. Leser, and J. Hakenberg What makes a gene name? Named entity recognition in the biomedical literature Brief Bioinform. 6 2005 257 269
    • (2005) Brief Bioinform. , vol.6 , pp. 257-269
    • Leser, U.1    Hakenberg, J.2
  • 11
    • 60549093731 scopus 로고    scopus 로고
    • BioTagger-GM: A gene/protein name recognition system
    • M. Torii et al. BioTagger-GM: a gene/protein name recognition system J. Am. Med. Inform. 16 2009 247 255
    • (2009) J. Am. Med. Inform. , vol.16 , pp. 247-255
    • Torii, M.1
  • 12
    • 58049217490 scopus 로고    scopus 로고
    • RNA recognition and signal transduction by RIG-I-like receptors
    • M. Yoneyama, and T. Fujita RNA recognition and signal transduction by RIG-I-like receptors Immunol. Rev. 227 2009 54 65
    • (2009) Immunol. Rev. , vol.227 , pp. 54-65
    • Yoneyama, M.1    Fujita, T.2
  • 13
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • M. Campillos et al. Drug target identification using side-effect similarity Science 321 2008 263 266
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1
  • 14
    • 2442654362 scopus 로고    scopus 로고
    • Biological nomenclatures: A source of lexical knowledge and ambiguity
    • O. Tuason et al. Biological nomenclatures: a source of lexical knowledge and ambiguity Pac. Symp. Biocomput. 2004 238 249
    • (2004) Pac. Symp. Biocomput. , pp. 238-249
    • Tuason, O.1
  • 15
    • 0031633368 scopus 로고    scopus 로고
    • Toward information extraction: Identifying protein names from biological papers
    • K. Fukuda et al. Toward information extraction: identifying protein names from biological papers Pac. Symp. Biocomput. 1998 707 718
    • (1998) Pac. Symp. Biocomput. , pp. 707-718
    • Fukuda, K.1
  • 16
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition
    • E. Sang, and F.D. Meulder Introduction to the CoNLL-2003 shared task: language-independent named entity recognition Proc. Seventh Conf. Natural Language Learning HLT-NAACL 2003 142 147
    • (2003) Proc. Seventh Conf. Natural Language Learning HLT-NAACL , pp. 142-147
    • Sang, E.1    Meulder, F.D.2
  • 18
    • 70349452071 scopus 로고    scopus 로고
    • Feature selection techniques for maximum entropy based biomedical named entity recognition
    • S.K. Saha et al. Feature selection techniques for maximum entropy based biomedical named entity recognition J. Biomed. Inf. 42 2009 905 911
    • (2009) J. Biomed. Inf. , vol.42 , pp. 905-911
    • Saha, S.K.1
  • 19
    • 84867640802 scopus 로고    scopus 로고
    • Conditional random fields and support vector machines for disorder named entity recognition in clinical texts
    • D.C. Li et al. Conditional random fields and support vector machines for disorder named entity recognition in clinical texts Proc. Workshop Curr. Trends Biomed. Natural Language 2008 94 95
    • (2008) Proc. Workshop Curr. Trends Biomed. Natural Language , pp. 94-95
    • Li, D.C.1
  • 21
    • 68949148714 scopus 로고    scopus 로고
    • Incorporating rich background knowledge for gene named entity classification and recognition
    • Y.P. Li et al. Incorporating rich background knowledge for gene named entity classification and recognition BMC Bioinf. 10 2009 223
    • (2009) BMC Bioinf. , vol.10 , pp. 223
    • Li, Y.P.1
  • 23
    • 79953109654 scopus 로고    scopus 로고
    • A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents in biomedical texts
    • I. Segura-Bedmar et al. A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents in biomedical texts BMC Bioinf. 12 Suppl. 2 2011 1
    • (2011) BMC Bioinf. , vol.12 , Issue.SUPPL. 2 , pp. 1
    • Segura-Bedmar, I.1
  • 24
    • 34547852239 scopus 로고    scopus 로고
    • Identification of new drug classification terms in textual resources
    • C. Kolarik et al. Identification of new drug classification terms in textual resources Bioinformatics 23 2007 264 272
    • (2007) Bioinformatics , vol.23 , pp. 264-272
    • Kolarik, C.1
  • 26
    • 84889588244 scopus 로고    scopus 로고
    • WBI-NER: The impact of domain-specific features on the performance of identifying and classifying mentions of drugs
    • T. Rocktäschel et al. WBI-NER: the impact of domain-specific features on the performance of identifying and classifying mentions of drugs Proc. Seventh International Workshop Semantic Evaluation 2013 356 363
    • (2013) Proc. Seventh International Workshop Semantic Evaluation , pp. 356-363
    • Rocktäschel, T.1
  • 27
    • 84863506694 scopus 로고    scopus 로고
    • ChemSpot: A hybrid system for chemical named entity recognition
    • T. Rocktäschel et al. ChemSpot: a hybrid system for chemical named entity recognition Bioinformatics 28 2012 1633 1640
    • (2012) Bioinformatics , vol.28 , pp. 1633-1640
    • Rocktäschel, T.1
  • 28
    • 70449387056 scopus 로고    scopus 로고
    • A dictionary to identify small molecules and drugs in free text
    • K. Hettne et al. A dictionary to identify small molecules and drugs in free text Bioinformatics 25 2009 2983 2991
    • (2009) Bioinformatics , vol.25 , pp. 2983-2991
    • Hettne, K.1
  • 29
    • 78549292887 scopus 로고    scopus 로고
    • A context pattern induction method for named entity extraction
    • P.P. Talukdar et al. A context pattern induction method for named entity extraction Proc. CoNLL 2006 2006 141 148
    • (2006) Proc. CoNLL 2006 , pp. 141-148
    • Talukdar, P.P.1
  • 30
    • 84936824188 scopus 로고
    • Word association norms, mutual information, and lexicography
    • K.W. Church, and P. Hanks Word association norms, mutual information, and lexicography Compu. Linguist. 16 1989 22 29
    • (1989) Compu. Linguist. , vol.16 , pp. 22-29
    • Church, K.W.1    Hanks, P.2
  • 31
    • 78149308924 scopus 로고    scopus 로고
    • Using text to build semantic networks for pharmacogenomics
    • A. Coulet et al. Using text to build semantic networks for pharmacogenomics J. Biomed. Inf. 43 2010 1009 1019
    • (2010) J. Biomed. Inf. , vol.43 , pp. 1009-1019
    • Coulet, A.1
  • 32
    • 25144520247 scopus 로고    scopus 로고
    • ABNER: An open source tool for automatically tagging genes, proteins, and other entity names in text
    • B. Settles ABNER: an open source tool for automatically tagging genes, proteins, and other entity names in text Bioinformatics 21 2005 3191 3192
    • (2005) Bioinformatics , vol.21 , pp. 3191-3192
    • Settles, B.1
  • 34
    • 80053974142 scopus 로고    scopus 로고
    • Oscar4: A exible architecture for chemical text-mining
    • D. Jessop et al. Oscar4: a exible architecture for chemical text-mining J. Chem. Inf. 3 2011 41
    • (2011) J. Chem. Inf. , vol.3 , pp. 41
    • Jessop, D.1
  • 35
    • 56649102386 scopus 로고    scopus 로고
    • Cascaded classifiers for confidence-based chemical named entity recognition
    • P. Corbett, and A. Copestake Cascaded classifiers for confidence-based chemical named entity recognition BMC Bioinf. 9 Suppl. 11 2008 4
    • (2008) BMC Bioinf. , vol.9 , Issue.SUPPL. 11 , pp. 4
    • Corbett, P.1    Copestake, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.