메뉴 건너뛰기




Volumn 112, Issue 50, 2015, Pages 15498-15503

Angptl4 links α-cell proliferation following glucagon receptor inhibition with adipose tissue triglyceride metabolism

Author keywords

Angiopoietin; Diabetes; Glucagon; LPL; Metabolism

Indexed keywords

ANGIOPOIETIN; ANGIOPOIETIN LIKE 4; GLUCAGON RECEPTOR; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; TRIACYLGLYCEROL; UNCLASSIFIED DRUG; ANGPTL4 PROTEIN, MOUSE; GLUCAGON;

EID: 84950336067     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1513872112     Document Type: Article
Times cited : (28)

References (69)
  • 1
    • 0034524938 scopus 로고    scopus 로고
    • Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus
    • Shah P, et al. (2000) Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 85(11):4053-4059.
    • (2000) J Clin Endocrinol Metab , vol.85 , Issue.11 , pp. 4053-4059
    • Shah, P.1
  • 2
    • 85019302509 scopus 로고    scopus 로고
    • Comparison of the fatty acid composition of the serum phospholipids of controls, prediabetics and adults with type 2 diabetes
    • Chuang LT, et al. (2012) Comparison of the fatty acid composition of the serum phospholipids of controls, prediabetics and adults with type 2 diabetes. J Diabetes Mellitus 2(4):393-401.
    • (2012) J Diabetes Mellitus , vol.2 , Issue.4 , pp. 393-401
    • Chuang, L.T.1
  • 3
    • 84920605320 scopus 로고    scopus 로고
    • A new biology of diabetes revealed by leptin
    • Unger RH, Roth MG (2015) A new biology of diabetes revealed by leptin. Cell Metab 21(1):15-20.
    • (2015) Cell Metab , vol.21 , Issue.1 , pp. 15-20
    • Unger, R.H.1    Roth, M.G.2
  • 4
    • 79961187183 scopus 로고    scopus 로고
    • The role of dysregulated glucagon secretion in type 2 diabetes
    • D'Alessio D (2011) The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes Metab 13(Suppl 1):126-132.
    • (2011) Diabetes Obes Metab , vol.13 , pp. 126-132
    • D'Alessio, D.1
  • 5
    • 0038707331 scopus 로고    scopus 로고
    • Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea
    • Yoon KH, et al. (2003) Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88(5):2300-2308.
    • (2003) J Clin Endocrinol Metab , vol.88 , Issue.5 , pp. 2300-2308
    • Yoon, K.H.1
  • 6
    • 0020623615 scopus 로고
    • Cellular composition of the human diabetic pancreas
    • Rahier J, Goebbels RM, Henquin JC (1983) Cellular composition of the human diabetic pancreas. Diabetologia 24(5):366-371.
    • (1983) Diabetologia , vol.24 , Issue.5 , pp. 366-371
    • Rahier, J.1    Goebbels, R.M.2    Henquin, J.C.3
  • 7
    • 10744222060 scopus 로고    scopus 로고
    • Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects
    • Deng S, et al. (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53(3):624-632.
    • (2004) Diabetes , vol.53 , Issue.3 , pp. 624-632
    • Deng, S.1
  • 8
    • 79551600048 scopus 로고    scopus 로고
    • Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice
    • Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH (2011) Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60(2):391-397.
    • (2011) Diabetes , vol.60 , Issue.2 , pp. 391-397
    • Lee, Y.1    Wang, M.Y.2    Du, X.Q.3    Charron, M.J.4    Unger, R.H.5
  • 9
    • 84866299596 scopus 로고    scopus 로고
    • Metabolic manifestations of insulin deficiency do not occur without glucagon action
    • Lee Y, et al. (2012) Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc Natl Acad Sci USA 109(37):14972-14976.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.37 , pp. 14972-14976
    • Lee, Y.1
  • 10
    • 84855459920 scopus 로고    scopus 로고
    • Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover
    • Unger RH, Cherrington AD (2012) Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover. J Clin Invest 122(1):4-12.
    • (2012) J Clin Invest , vol.122 , Issue.1 , pp. 4-12
    • Unger, R.H.1    Cherrington, A.D.2
  • 12
    • 63449087896 scopus 로고    scopus 로고
    • Insulin signaling in alpha cells modulates glucagon secretion in vivo
    • Kawamori D, et al. (2009) Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab 9(4):350-361.
    • (2009) Cell Metab , vol.9 , Issue.4 , pp. 350-361
    • Kawamori, D.1
  • 13
    • 84929954732 scopus 로고    scopus 로고
    • First proof of pharmacology in humans of a novel glucagon receptor antisense drug
    • van Dongen MG, et al. (2014) First proof of pharmacology in humans of a novel glucagon receptor antisense drug. J Clin Pharmacol 55 (3).
    • (2014) J Clin Pharmacol , vol.55 , Issue.3
    • Van Dongen, M.G.1
  • 14
    • 84906831104 scopus 로고    scopus 로고
    • Ablation of glucagon receptor signaling by peptide-based glucagon antagonists improves glucose tolerance in high fat fed mice
    • McShane LM, Franklin ZJ, O'Harte FP, Irwin N (2014) Ablation of glucagon receptor signaling by peptide-based glucagon antagonists improves glucose tolerance in high fat fed mice. Peptides 60:95-101.
    • (2014) Peptides , vol.60 , pp. 95-101
    • McShane, L.M.1    Franklin, Z.J.2    O'Harte, F.P.3    Irwin, N.4
  • 15
    • 84869805184 scopus 로고    scopus 로고
    • Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist
    • Mu J, et al. (2012) Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist. PLoS One 7(11):e49572.
    • (2012) PLoS One , vol.7 , Issue.11 , pp. e49572
    • Mu, J.1
  • 16
    • 0037417984 scopus 로고    scopus 로고
    • Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice
    • Gelling RW, et al. (2003) Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 100(3):1438-1443.
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.3 , pp. 1438-1443
    • Gelling, R.W.1
  • 17
    • 70350666371 scopus 로고    scopus 로고
    • Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor
    • Zhou C, Dhall D, Nissen NN, Chen CR, Yu R (2009) Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 38(8):941-946.
    • (2009) Pancreas , vol.38 , Issue.8 , pp. 941-946
    • Zhou, C.1    Dhall, D.2    Nissen, N.N.3    Chen, C.R.4    Yu, R.5
  • 18
    • 80755168891 scopus 로고    scopus 로고
    • Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice
    • Thorel F, et al. (2011) Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice. Diabetes 60(11):2872-2882.
    • (2011) Diabetes , vol.60 , Issue.11 , pp. 2872-2882
    • Thorel, F.1
  • 19
    • 84865601606 scopus 로고    scopus 로고
    • Glucose metabolism: Key endogenous regulator of β-cell replication and survival
    • Dadon D, et al. (2012) Glucose metabolism: Key endogenous regulator of β-cell replication and survival. Diabetes Obes Metab 14(Suppl 3):101-108.
    • (2012) Diabetes Obes Metab , vol.14 , pp. 101-108
    • Dadon, D.1
  • 20
    • 84943253417 scopus 로고    scopus 로고
    • Insulin demand regulates β cell number via the unfolded protein response
    • Sharma RB, et al. (2015) Insulin demand regulates β cell number via the unfolded protein response. J Clin Invest 125(10):3831-3846.
    • (2015) J Clin Invest , vol.125 , Issue.10 , pp. 3831-3846
    • Sharma, R.B.1
  • 21
    • 84937514372 scopus 로고    scopus 로고
    • Glucagon couples hepatic amino acid catabolism to mTOR-dependent regulation of α-cell mass
    • Solloway MJ, et al. (2015) Glucagon couples hepatic amino acid catabolism to mTOR-dependent regulation of α-cell mass. Cell Rep 12(3):495-510.
    • (2015) Cell Rep , vol.12 , Issue.3 , pp. 495-510
    • Solloway, M.J.1
  • 23
    • 33751213896 scopus 로고    scopus 로고
    • Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue
    • Sukonina V, Lookene A, Olivecrona T, Olivecrona G (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA 103(46):17450-17455.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.46 , pp. 17450-17455
    • Sukonina, V.1    Lookene, A.2    Olivecrona, T.3    Olivecrona, G.4
  • 24
    • 4544274752 scopus 로고    scopus 로고
    • The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment
    • Mandard S, et al. (2004) The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem 279(33):34411-34420.
    • (2004) J Biol Chem , vol.279 , Issue.33 , pp. 34411-34420
    • Mandard, S.1
  • 25
    • 70350008227 scopus 로고    scopus 로고
    • Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoidregulated triglyceride metabolism
    • Koliwad SK, et al. (2009) Angiopoietin-like 4(ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoidregulated triglyceride metabolism. J Biol Chem 284(38):25593-25601.
    • (2009) J Biol Chem , vol.284 , Issue.38 , pp. 25593-25601
    • Koliwad, S.K.1
  • 26
    • 0034666157 scopus 로고    scopus 로고
    • Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene
    • Kersten S, et al. (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275(37):28488-28493.
    • (2000) J Biol Chem , vol.275 , Issue.37 , pp. 28488-28493
    • Kersten, S.1
  • 27
    • 84896532233 scopus 로고    scopus 로고
    • Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise
    • Catoire M, et al. (2014) Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc Natl Acad Sci USA 111(11):E1043-E1052.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.11 , pp. E1043-E1052
    • Catoire, M.1
  • 28
    • 13444250891 scopus 로고    scopus 로고
    • Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart
    • Yu X, et al. (2005) Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart. Proc Natl Acad Sci USA 102(5):1767-1772.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.5 , pp. 1767-1772
    • Yu, X.1
  • 29
    • 66349098389 scopus 로고    scopus 로고
    • Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids
    • Kersten S, et al. (2009) Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol 29(6):969-974.
    • (2009) Arterioscler Thromb Vasc Biol , vol.29 , Issue.6 , pp. 969-974
    • Kersten, S.1
  • 30
    • 84950323666 scopus 로고    scopus 로고
    • ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure
    • Dijk W, et al. (2015) ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. eLife 4:4.
    • (2015) ELife , vol.4 , pp. 4
    • Dijk, W.1
  • 31
    • 26844540456 scopus 로고    scopus 로고
    • Transgenic angiopoietin-like (angptl) 4 overexpression and targeted disruption of angptl4 and angptl3: Regulation of triglyceride metabolism
    • Köster A, et al. (2005) Transgenic angiopoietin-like (angptl) 4 overexpression and targeted disruption of angptl4 and angptl3: Regulation of triglyceride metabolism. Endocrinology 146(11):4943-4950.
    • (2005) Endocrinology , vol.146 , Issue.11 , pp. 4943-4950
    • Köster, A.1
  • 32
    • 61749090233 scopus 로고    scopus 로고
    • Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans
    • Romeo S, et al. (2009) Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Invest 119(1):70-79.
    • (2009) J Clin Invest , vol.119 , Issue.1 , pp. 70-79
    • Romeo, S.1
  • 33
    • 0027516035 scopus 로고
    • Mechanism of action of des-His1-[Glu9]glucagon amide, a peptide antagonist of the glucagon receptor system
    • Post SR, Rubinstein PG, Tager HS (1993) Mechanism of action of des-His1-[Glu9]glucagon amide, a peptide antagonist of the glucagon receptor system. Proc Natl Acad Sci USA 90(5):1662-1666.
    • (1993) Proc Natl Acad Sci USA , vol.90 , Issue.5 , pp. 1662-1666
    • Post, S.R.1    Rubinstein, P.G.2    Tager, H.S.3
  • 34
    • 0024842752 scopus 로고
    • Biological activities of des-His1[Glu9] glucagon amide, a glucagon antagonist
    • Unson CG, Gurzenda EM, Merrifield RB (1989) Biological activities of des-His1[Glu9] glucagon amide, a glucagon antagonist. Peptides 10(6):1171-1177.
    • (1989) Peptides , vol.10 , Issue.6 , pp. 1171-1177
    • Unson, C.G.1    Gurzenda, E.M.2    Merrifield, R.B.3
  • 35
    • 84862746869 scopus 로고    scopus 로고
    • Regulation of mouse intestinal L cell progenitors proliferation by the glucagon family of peptides
    • Grigoryan M, Kedees MH, Charron MJ, Guz Y, Teitelman G (2012) Regulation of mouse intestinal L cell progenitors proliferation by the glucagon family of peptides. Endocrinology 153(7):3076-3088.
    • (2012) Endocrinology , vol.153 , Issue.7 , pp. 3076-3088
    • Grigoryan, M.1    Kedees, M.H.2    Charron, M.J.3    Guz, Y.4    Teitelman, G.5
  • 36
    • 51349133256 scopus 로고    scopus 로고
    • Interleukin-6 regulates pancreatic alpha-cell mass expansion
    • Ellingsgaard H, et al. (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 105(35):13163-13168.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.35 , pp. 13163-13168
    • Ellingsgaard, H.1
  • 37
    • 84903447132 scopus 로고    scopus 로고
    • IL-6-dependent proliferation of alpha cells in mice with partial pancreatic-duct ligation
    • Cai Y, et al. (2014) IL-6-dependent proliferation of alpha cells in mice with partial pancreatic-duct ligation. Diabetologia 57(7):1420-1427.
    • (2014) Diabetologia , vol.57 , Issue.7 , pp. 1420-1427
    • Cai, Y.1
  • 38
    • 54849431792 scopus 로고    scopus 로고
    • The glucagon receptor is required for the adaptive metabolic response to fasting
    • Longuet C, et al. (2008) The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 8(5):359-371.
    • (2008) Cell Metab , vol.8 , Issue.5 , pp. 359-371
    • Longuet, C.1
  • 39
    • 79957641481 scopus 로고    scopus 로고
    • Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: Implications on anti-glucagon therapies for diabetes
    • Yang J, et al. (2011) Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: Implications on anti-glucagon therapies for diabetes. BMC Genomics 12:281.
    • (2011) BMC Genomics , vol.12 , pp. 281
    • Yang, J.1
  • 40
    • 84901788541 scopus 로고    scopus 로고
    • COMPARTMENTS: Unification and visualization of protein subcellular localization evidence
    • Binder JX, et al. (2014) COMPARTMENTS: Unification and visualization of protein subcellular localization evidence. Database (Oxford) 2014: bau012.
    • (2014) Database (Oxford) , vol.2014 , pp. bau012
    • Binder, J.X.1
  • 41
    • 84877707122 scopus 로고    scopus 로고
    • Betatrophin: A hormone that controls pancreatic β cell proliferation
    • Yi P, Park JS, Melton DA (2013) Betatrophin: A hormone that controls pancreatic β cell proliferation. Cell 153(4):747-758.
    • (2013) Cell , vol.153 , Issue.4 , pp. 747-758
    • Yi, P.1    Park, J.S.2    Melton, D.A.3
  • 42
    • 0028987251 scopus 로고
    • Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model
    • Finegood DT, Scaglia L, Bonner-Weir S (1995) Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44(3):249-256.
    • (1995) Diabetes , vol.44 , Issue.3 , pp. 249-256
    • Finegood, D.T.1    Scaglia, L.2    Bonner-Weir, S.3
  • 44
    • 43849096860 scopus 로고    scopus 로고
    • Beneficial effects of lipids and prolactin on insulin secretion and beta-cell proliferation: A role for lipids in the adaptation of islets to pregnancy
    • Brelje TC, Bhagroo NV, Stout LE, Sorenson RL (2008) Beneficial effects of lipids and prolactin on insulin secretion and beta-cell proliferation: A role for lipids in the adaptation of islets to pregnancy. J Endocrinol 197(2):265-276.
    • (2008) J Endocrinol , vol.197 , Issue.2 , pp. 265-276
    • Brelje, T.C.1    Bhagroo, N.V.2    Stout, L.E.3    Sorenson, R.L.4
  • 45
    • 8144226856 scopus 로고    scopus 로고
    • The gut microbiota as an environmental factor that regulates fat storage
    • Bäckhed F, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718-15723.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.44 , pp. 15718-15723
    • Bäckhed, F.1
  • 46
    • 78649499036 scopus 로고    scopus 로고
    • Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages
    • Lichtenstein L, et al. (2010) Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab 12(6):580-592.
    • (2010) Cell Metab , vol.12 , Issue.6 , pp. 580-592
    • Lichtenstein, L.1
  • 47
    • 84865029204 scopus 로고    scopus 로고
    • Pancreatic beta cells in very old mice retain capacity for compensatory proliferation
    • Stolovich-Rain M, Hija A, Grimsby J, Glaser B, Dor Y (2012) Pancreatic beta cells in very old mice retain capacity for compensatory proliferation. J Biol Chem 287(33):27407-27414.
    • (2012) J Biol Chem , vol.287 , Issue.33 , pp. 27407-27414
    • Stolovich-Rain, M.1    Hija, A.2    Grimsby, J.3    Glaser, B.4    Dor, Y.5
  • 48
    • 10744230106 scopus 로고    scopus 로고
    • GLP-1 derivative liraglutide in rats with beta-cell deficiencies: Influence of metabolic state on beta-cell mass dynamics
    • Sturis J, et al. (2003) GLP-1 derivative liraglutide in rats with beta-cell deficiencies: Influence of metabolic state on beta-cell mass dynamics. Br J Pharmacol 140(1):123-132.
    • (2003) Br J Pharmacol , vol.140 , Issue.1 , pp. 123-132
    • Sturis, J.1
  • 49
    • 84908374200 scopus 로고    scopus 로고
    • Perspectives on the activities of ANGPTL8/betatrophin
    • Yi P, Park JS, Melton DA (2014) Perspectives on the activities of ANGPTL8/betatrophin. Cell 159(3):467-468.
    • (2014) Cell , vol.159 , Issue.3 , pp. 467-468
    • Yi, P.1    Park, J.S.2    Melton, D.A.3
  • 50
    • 84937525306 scopus 로고    scopus 로고
    • The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice
    • Spaeth JM, et al. (2015) The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia 58(8):1836-1844.
    • (2015) Diabetologia , vol.58 , Issue.8 , pp. 1836-1844
    • Spaeth, J.M.1
  • 51
    • 79551532051 scopus 로고    scopus 로고
    • Insulin and glucagon regulate pancreatic α-cell proliferation
    • Liu Z, et al. (2011) Insulin and glucagon regulate pancreatic α-cell proliferation. PLoS One 6(1):e16096.
    • (2011) PLoS One , vol.6 , Issue.1 , pp. e16096
    • Liu, Z.1
  • 52
    • 20944447890 scopus 로고    scopus 로고
    • Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice
    • Xu A, et al. (2005) Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci USA 102(17):6086-6091.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.17 , pp. 6086-6091
    • Xu, A.1
  • 53
    • 84863281947 scopus 로고    scopus 로고
    • Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes
    • Gray NE, et al. (2012) Angiopoietin-like 4(Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J Biol Chem 287(11):8444-8456.
    • (2012) J Biol Chem , vol.287 , Issue.11 , pp. 8444-8456
    • Gray, N.E.1
  • 54
    • 84875478761 scopus 로고    scopus 로고
    • Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: Evidence for a circulating α-cell growth factor
    • Longuet C, et al. (2013) Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: Evidence for a circulating α-cell growth factor. Diabetes 62(4):1196-1205.
    • (2013) Diabetes , vol.62 , Issue.4 , pp. 1196-1205
    • Longuet, C.1
  • 56
    • 84924787149 scopus 로고    scopus 로고
    • Lack of glucagon receptor signaling and its implications beyond glucose homeostasis
    • Charron MJ, Vuguin PM (2015) Lack of glucagon receptor signaling and its implications beyond glucose homeostasis. J Endocrinol 224(3):R123-R130.
    • (2015) J Endocrinol , vol.224 , Issue.3 , pp. R123-R130
    • Charron, M.J.1    Vuguin, P.M.2
  • 57
    • 84939984905 scopus 로고    scopus 로고
    • In vivo targeted delivery of ANGPTL8 gene for beta cell regeneration in rats
    • Chen J, et al. (2015) In vivo targeted delivery of ANGPTL8 gene for beta cell regeneration in rats. Diabetologia 58(5):1036-1044.
    • (2015) Diabetologia , vol.58 , Issue.5 , pp. 1036-1044
    • Chen, J.1
  • 58
    • 84908331466 scopus 로고    scopus 로고
    • ANGPTL8/betatrophin does not control pancreatic beta cell expansion
    • Gusarova V, et al. (2014) ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159(3):691-696.
    • (2014) Cell , vol.159 , Issue.3 , pp. 691-696
    • Gusarova, V.1
  • 59
    • 84885044818 scopus 로고    scopus 로고
    • Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis
    • Wang Y, et al. (2013) Mice lacking ANGPTL8(Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci USA 110(40):16109-16114.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.40 , pp. 16109-16114
    • Wang, Y.1
  • 60
    • 84931566375 scopus 로고    scopus 로고
    • Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice
    • Cox AR, et al. (2015) Angiopoietin-like protein 8(ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia 58(7):1523-1531.
    • (2015) Diabetologia , vol.58 , Issue.7 , pp. 1523-1531
    • Cox, A.R.1
  • 61
    • 84864809680 scopus 로고    scopus 로고
    • Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels
    • Zhang R (2012) Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun 424(4):786-792.
    • (2012) Biochem Biophys Res Commun , vol.424 , Issue.4 , pp. 786-792
    • Zhang, R.1
  • 62
    • 84864501914 scopus 로고    scopus 로고
    • Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism
    • Ren G, Kim JY, Smas CM (2012) Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab 303(3):E334-E351.
    • (2012) Am J Physiol Endocrinol Metab , vol.303 , Issue.3 , pp. E334-E351
    • Ren, G.1    Kim, J.Y.2    Smas, C.M.3
  • 63
    • 84859161516 scopus 로고    scopus 로고
    • Regulation of triglyceride metabolism by Angiopoietinlike proteins
    • Mattijssen F, Kersten S (2012) Regulation of triglyceride metabolism by Angiopoietinlike proteins. Biochim Biophys Acta 1821(5):782-789.
    • (2012) Biochim Biophys Acta , vol.1821 , Issue.5 , pp. 782-789
    • Mattijssen, F.1    Kersten, S.2
  • 64
    • 0036847133 scopus 로고    scopus 로고
    • Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase
    • Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43(11):1770-1772.
    • (2002) J Lipid Res , vol.43 , Issue.11 , pp. 1770-1772
    • Yoshida, K.1    Shimizugawa, T.2    Ono, M.3    Furukawa, H.4
  • 65
    • 66449084528 scopus 로고    scopus 로고
    • A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization
    • Yau MH, et al. (2009) A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J Biol Chem 284(18):11942-11952.
    • (2009) J Biol Chem , vol.284 , Issue.18 , pp. 11942-11952
    • Yau, M.H.1
  • 66
    • 84857435669 scopus 로고    scopus 로고
    • Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18
    • Pascoe J, et al. (2012) Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18. Diabetes 61(3):632-641.
    • (2012) Diabetes , vol.61 , Issue.3 , pp. 632-641
    • Pascoe, J.1
  • 67
    • 0030759095 scopus 로고    scopus 로고
    • The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: Results of the Paris Prospective Study
    • Charles MA, et al. (1997) The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: Results of the Paris Prospective Study. Diabetologia 40(9):1101-1106.
    • (1997) Diabetologia , vol.40 , Issue.9 , pp. 1101-1106
    • Charles, M.A.1
  • 68
    • 13344259300 scopus 로고    scopus 로고
    • Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice
    • Chen H, et al. (1996) Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3):491-495.
    • (1996) Cell , vol.84 , Issue.3 , pp. 491-495
    • Chen, H.1
  • 69
    • 85003341559 scopus 로고    scopus 로고
    • Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway
    • Blum B, et al. (2014) Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. eLife 3:e02809.
    • (2014) ELife , vol.3 , pp. e02809
    • Blum, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.