메뉴 건너뛰기




Volumn 1363, Issue 1, 2016, Pages 91-98

One-carbon metabolism and epigenetics: Understanding the specificity

Author keywords

Epigenetics; Histone methylation; Histone methyltransferase; One carbon metabolism

Indexed keywords

HISTONE METHYLTRANSFERASE; METHIONINE; CHROMATIN; FOLIC ACID; HISTONE; HISTONE LYSINE METHYLTRANSFERASE; S ADENOSYLMETHIONINE;

EID: 84949655663     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.12956     Document Type: Article
Times cited : (289)

References (73)
  • 1
    • 72949117234 scopus 로고    scopus 로고
    • Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila
    • Grandison, R.C., M.D. Piper & L. Partridge. 2009. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462: 1061-1064.
    • (2009) Nature , vol.462 , pp. 1061-1064
    • Grandison, R.C.1    Piper, M.D.2    Partridge, L.3
  • 2
    • 84875353168 scopus 로고    scopus 로고
    • Interactions between epigenetics and metabolism in cancers
    • Yun, J. et al. 2012. Interactions between epigenetics and metabolism in cancers. Front. Oncol. 2: 163.
    • (2012) Front. Oncol. , vol.2 , pp. 163
    • Yun, J.1
  • 3
    • 84900410413 scopus 로고    scopus 로고
    • Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity
    • Kraus, D. et al. 2014. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508: 258-262.
    • (2014) Nature , vol.508 , pp. 258-262
    • Kraus, D.1
  • 4
    • 84875738351 scopus 로고    scopus 로고
    • Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism
    • Cabreiro, F. et al. 2013. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153: 228-239.
    • (2013) Cell , vol.153 , pp. 228-239
    • Cabreiro, F.1
  • 5
    • 77956058729 scopus 로고    scopus 로고
    • Epigenetics and cardiovascular disease
    • Ordovas, J.M. & C.E. Smith. 2010. Epigenetics and cardiovascular disease. Nat. Rev. Cardiol. 7: 510-519.
    • (2010) Nat. Rev. Cardiol. , vol.7 , pp. 510-519
    • Ordovas, J.M.1    Smith, C.E.2
  • 6
    • 84942294112 scopus 로고    scopus 로고
    • Epigenetic regulation of ageing: linking environmental inputs to genomic stability
    • Benayoun, B.A., E.A. Pollina & A. Brunet. 2015. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16: 593-610.
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 593-610
    • Benayoun, B.A.1    Pollina, E.A.2    Brunet, A.3
  • 7
    • 78649391422 scopus 로고    scopus 로고
    • Cellular metabolic stress: considering how cells respond to nutrient excess
    • Wellen, K.E. & C.B. Thompson. 2010. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 40: 323-332.
    • (2010) Mol. Cell , vol.40 , pp. 323-332
    • Wellen, K.E.1    Thompson, C.B.2
  • 8
    • 84881177291 scopus 로고    scopus 로고
    • Serine, glycine and one-carbon units: cancer metabolism in full circle
    • Locasale, J.W. 2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13: 572-583.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 572-583
    • Locasale, J.W.1
  • 9
    • 33947482638 scopus 로고
    • The occurrence of ε-N-methyl lysine in histones
    • Murray, K. 1964. The occurrence of ε-N-methyl lysine in histones. Biochemistry 3: 10-15.
    • (1964) Biochemistry , vol.3 , pp. 10-15
    • Murray, K.1
  • 10
    • 0033603396 scopus 로고    scopus 로고
    • Regulation of transcription by a protein methyltransferase
    • Chen, D.G. et al. 1999. Regulation of transcription by a protein methyltransferase. Science 284: 2174-2177.
    • (1999) Science , vol.284 , pp. 2174-2177
    • Chen, D.G.1
  • 11
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by site-specific histone H3 methyltransferases
    • Rea, S. et al. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593-599.
    • (2000) Nature , vol.406 , pp. 593-599
    • Rea, S.1
  • 12
    • 0015239519 scopus 로고
    • Inhibition of transmethylations of biogenic amines by S-adenosylhomocysteine. Enhancement of transmethylation by adenosylhomocysteinase
    • Deguchi, T. & J. Barchas. 1971. Inhibition of transmethylations of biogenic amines by S-adenosylhomocysteine. Enhancement of transmethylation by adenosylhomocysteinase. J. Biol. Chem. 246: 3175-3181.
    • (1971) J. Biol. Chem. , vol.246 , pp. 3175-3181
    • Deguchi, T.1    Barchas, J.2
  • 13
    • 0018378083 scopus 로고
    • Relationship between tissue-levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions
    • Hoffman, D.R., W.E. Cornatzer & J.A. Duerre. 1979. Relationship between tissue-levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions. Can. J. Biochem. 57: 56-65.
    • (1979) Can. J. Biochem. , vol.57 , pp. 56-65
    • Hoffman, D.R.1    Cornatzer, W.E.2    Duerre, J.A.3
  • 14
    • 80053922625 scopus 로고    scopus 로고
    • Metabolic flux and the regulation of mammalian cell growth
    • Locasale, J.W. & L.C. Cantley. 2011. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 14: 443-451.
    • (2011) Cell Metab. , vol.14 , pp. 443-451
    • Locasale, J.W.1    Cantley, L.C.2
  • 15
    • 77957666255 scopus 로고    scopus 로고
    • Histone methyl transferases and demethylases; can they link metabolism and transcription
    • Teperino, R., K. Schoonjans & J. Auwerx. 2010. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab. 12: 321-327.
    • (2010) Cell Metab. , vol.12 , pp. 321-327
    • Teperino, R.1    Schoonjans, K.2    Auwerx, J.3
  • 16
    • 84900332195 scopus 로고    scopus 로고
    • Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells
    • Shiraki, N. et al. 2014. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19: 780-794.
    • (2014) Cell Metab. , vol.19 , pp. 780-794
    • Shiraki, N.1
  • 17
    • 84879083630 scopus 로고    scopus 로고
    • NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink
    • Ulanovskaya, O.A., A.M. Zuhl & B.F. Cravatt. 2013. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat. Chem. Biol. 9: 300-306.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 300-306
    • Ulanovskaya, O.A.1    Zuhl, A.M.2    Cravatt, B.F.3
  • 18
    • 84930361385 scopus 로고    scopus 로고
    • Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis
    • Tang, X. et al. 2015. Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis. PLoS Genet. 11: e1005158.
    • (2015) PLoS Genet. , vol.11 , pp. e1005158
    • Tang, X.1
  • 19
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang, N. et al. 2013. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339: 222-226.
    • (2013) Science , vol.339 , pp. 222-226
    • Shyh-Chang, N.1
  • 20
    • 67749140110 scopus 로고    scopus 로고
    • Dependence of mouse embryonic stem cells on threonine catabolism
    • Wang, J. et al. 2009. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325: 435-439.
    • (2009) Science , vol.325 , pp. 435-439
    • Wang, J.1
  • 21
    • 0025362827 scopus 로고
    • Methionine metabolism in mammals
    • Finkelstein, J.D. 1990. Methionine metabolism in mammals. J. Nutr. Biochem. 1: 228-237.
    • (1990) J. Nutr. Biochem. , vol.1 , pp. 228-237
    • Finkelstein, J.D.1
  • 22
    • 0001426980 scopus 로고
    • S-adenosylmethionine; a new intermediate formed enzymatically from l-methionine and adenosinetriphosphate
    • Cantoni, G.L. 1953. S-adenosylmethionine; a new intermediate formed enzymatically from l-methionine and adenosinetriphosphate. J. Biol. Chem. 204: 403-416.
    • (1953) J. Biol. Chem. , vol.204 , pp. 403-416
    • Cantoni, G.L.1
  • 23
    • 70449254180 scopus 로고
    • The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine
    • De La Haba, G. & G.L. Cantoni. 1959. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J. Biol. Chem. 234: 603-608.
    • (1959) J. Biol. Chem. , vol.234 , pp. 603-608
    • De La Haba, G.1    Cantoni, G.L.2
  • 24
    • 0036752957 scopus 로고    scopus 로고
    • Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance
    • Cynober, L.A. 2002. Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition 18: 761-766.
    • (2002) Nutrition , vol.18 , pp. 761-766
    • Cynober, L.A.1
  • 25
    • 79951892537 scopus 로고    scopus 로고
    • The human serum metabolome
    • Psychogios, N. et al. 2011. The human serum metabolome. PLoS One 6: 1-23.
    • (2011) PLoS One , vol.6 , pp. 1-23
    • Psychogios, N.1
  • 26
    • 84948412126 scopus 로고    scopus 로고
    • Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism
    • Mentch, S.J. et al. 2015. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22: 861-873.
    • (2015) Cell Metab , vol.22 , pp. 861-873
    • Mentch, S.J.1
  • 27
    • 0033981770 scopus 로고    scopus 로고
    • Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5'-phosphate concentrations
    • Melnyk, S. et al. 2000. Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5'-phosphate concentrations. Clin. Chem. 46: 265-272.
    • (2000) Clin. Chem. , vol.46 , pp. 265-272
    • Melnyk, S.1
  • 28
    • 84875836819 scopus 로고    scopus 로고
    • The relationship between intracellular and plasma levels of folate and metabolites in the methionine cycle: a model
    • Duncan, T.M., M.C. Reed & H.F. Nijhout. 2013. The relationship between intracellular and plasma levels of folate and metabolites in the methionine cycle: a model. Mol. Nutr. Food Res. 57: 628-636.
    • (2013) Mol. Nutr. Food Res , vol.57 , pp. 628-636
    • Duncan, T.M.1    Reed, M.C.2    Nijhout, H.F.3
  • 29
    • 0037172665 scopus 로고    scopus 로고
    • Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain
    • Feng, Q. et al. 2002. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12: 1052-1058.
    • (2002) Curr. Biol. , vol.12 , pp. 1052-1058
    • Feng, Q.1
  • 30
    • 0037421847 scopus 로고    scopus 로고
    • Structure and catalytic mechanism of the human histone methyltransferase SET7/9
    • Xiao, B. et al. 2003. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421: 652-656.
    • (2003) Nature , vol.421 , pp. 652-656
    • Xiao, B.1
  • 31
    • 3242886771 scopus 로고    scopus 로고
    • PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations
    • Dolinsky, T.J. et al. 2004. PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32: W665-W667.
    • (2004) Nucleic Acids Res. , vol.32 , pp. W665-W667
    • Dolinsky, T.J.1
  • 32
    • 84870792079 scopus 로고    scopus 로고
    • Perceiving the epigenetic landscape through histone readers
    • Musselman, C.A. et al. 2012. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19: 1218-1227.
    • (2012) Nat. Struct. Mol. Biol , vol.19 , pp. 1218-1227
    • Musselman, C.A.1
  • 33
    • 35848961668 scopus 로고    scopus 로고
    • How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers
    • Taverna, S.D. et al. 2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14: 1025-1040.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 1025-1040
    • Taverna, S.D.1
  • 34
    • 13444267442 scopus 로고    scopus 로고
    • Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation
    • Pray-Grant, M.G. et al. 2005. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433: 434-438.
    • (2005) Nature , vol.433 , pp. 434-438
    • Pray-Grant, M.G.1
  • 35
    • 0035282458 scopus 로고    scopus 로고
    • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    • Bannister, A.J. et al. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-124.
    • (2001) Nature , vol.410 , pp. 120-124
    • Bannister, A.J.1
  • 36
    • 0036830642 scopus 로고    scopus 로고
    • Role of histone H3 lysine 27 methylation in polycomb-group silencing
    • Cao, R. et al. 2002. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298: 1039-1043.
    • (2002) Science , vol.298 , pp. 1039-1043
    • Cao, R.1
  • 37
    • 9244252580 scopus 로고    scopus 로고
    • Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks
    • Huyen, Y. et al. 2004. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432: 406-411.
    • (2004) Nature , vol.432 , pp. 406-411
    • Huyen, Y.1
  • 38
    • 34250307630 scopus 로고    scopus 로고
    • The landscape of histone modifications across 1% of the human genome in five human cell lines
    • Koch, C.M. et al. 2007. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17: 691-707.
    • (2007) Genome Res. , vol.17 , pp. 691-707
    • Koch, C.M.1
  • 39
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518: 317-330.
    • (2015) Nature , vol.518 , pp. 317-330
  • 40
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Consortium, E.P. et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799-816.
    • (2007) Nature , vol.447 , pp. 799-816
    • Consortium, E.P.1
  • 41
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski, A. et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 42
    • 0037059029 scopus 로고    scopus 로고
    • Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast
    • Noma, K. & S.I. Grewal. 2002. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl 4): 16438-16445.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 16438-16445
    • Noma, K.1    Grewal, S.I.2
  • 43
    • 0037172993 scopus 로고    scopus 로고
    • Methylation of histone H3 Lys 4 in coding regions of active genes
    • Bernstein, B.E. et al. 2002. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. U.S.A. 99: 8695-8700.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 8695-8700
    • Bernstein, B.E.1
  • 44
    • 84942984698 scopus 로고    scopus 로고
    • Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes
    • Chen, K. et al. 2015. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet. 47: 1149-1157.
    • (2015) Nat. Genet. , vol.47 , pp. 1149-1157
    • Chen, K.1
  • 45
    • 84905392053 scopus 로고    scopus 로고
    • H3K4me3 breadth is linked to cell identity and transcriptional consistency
    • Benayoun, B.A. et al. 2014. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158: 673-688.
    • (2014) Cell , vol.158 , pp. 673-688
    • Benayoun, B.A.1
  • 46
    • 48149105342 scopus 로고    scopus 로고
    • Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3
    • van Ingen, H. et al. 2008. Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3. Structure 16: 1245-1256.
    • (2008) Structure , vol.16 , pp. 1245-1256
    • van Ingen, H.1
  • 47
    • 84870490787 scopus 로고    scopus 로고
    • Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4
    • Herz, H.M. et al. 2012. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26: 2604-2620.
    • (2012) Genes Dev. , vol.26 , pp. 2604-2620
    • Herz, H.M.1
  • 48
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
    • Nakayama, J. et al. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110-113.
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1
  • 49
    • 0035839110 scopus 로고    scopus 로고
    • Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries
    • Noma, K., C.D. Allis & S.I. Grewal. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: 1150-1155.
    • (2001) Science , vol.293 , pp. 1150-1155
    • Noma, K.1    Allis, C.D.2    Grewal, S.I.3
  • 50
    • 0036338205 scopus 로고    scopus 로고
    • Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin
    • Peters, A.H. et al. 2002. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 30: 77-80.
    • (2002) Nat. Genet. , vol.30 , pp. 77-80
    • Peters, A.H.1
  • 51
    • 17944380227 scopus 로고    scopus 로고
    • Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability
    • Peters, A.H. et al. 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323-337.
    • (2001) Cell , vol.107 , pp. 323-337
    • Peters, A.H.1
  • 52
    • 15044350409 scopus 로고    scopus 로고
    • Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment
    • Stewart, M.D., L.J. & J. Wong. 2005. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol. 25: 2525-2538.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 2525-2538
    • Stewart, M.D.1    Wong, J.L.J.2
  • 53
    • 0035282573 scopus 로고    scopus 로고
    • Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
    • Lachner, M. et al. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116-120.
    • (2001) Nature , vol.410 , pp. 116-120
    • Lachner, M.1
  • 54
    • 0344081889 scopus 로고    scopus 로고
    • Characterization of EZH1, a human homolog of Drosophila Enhancer of zeste near BRCA1
    • Abel, K.J. et al. 1996. Characterization of EZH1, a human homolog of Drosophila Enhancer of zeste near BRCA1. Genomics 37: 161-171.
    • (1996) Genomics , vol.37 , pp. 161-171
    • Abel, K.J.1
  • 55
    • 7244234099 scopus 로고    scopus 로고
    • Role of histone H2A ubiquitination in Polycomb silencing
    • Wang, H. et al. 2004. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431: 873-878.
    • (2004) Nature , vol.431 , pp. 873-878
    • Wang, H.1
  • 56
    • 32844459336 scopus 로고    scopus 로고
    • The Polycomb group protein EZH2 directly controls DNA methylation
    • Vire, E. et al. 2006. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871-874.
    • (2006) Nature , vol.439 , pp. 871-874
    • Vire, E.1
  • 57
    • 9444244427 scopus 로고    scopus 로고
    • Chromatin compaction by a polycomb group protein complex
    • Francis, N.J., R.E. Kingston & C.L. Woodcock. 2004. Chromatin compaction by a polycomb group protein complex. Science 306: 1574-1577.
    • (2004) Science , vol.306 , pp. 1574-1577
    • Francis, N.J.1    Kingston, R.E.2    Woodcock, C.L.3
  • 58
    • 0029151566 scopus 로고
    • The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins
    • Stassen, M.J. et al. 1995. The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech. Dev. 52: 209-223.
    • (1995) Mech. Dev. , vol.52 , pp. 209-223
    • Stassen, M.J.1
  • 59
    • 0028110864 scopus 로고
    • The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes
    • Tschiersch, B. et al. 1994. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13: 3822-3831.
    • (1994) EMBO J. , vol.13 , pp. 3822-3831
    • Tschiersch, B.1
  • 60
    • 0035818465 scopus 로고    scopus 로고
    • COMPASS: a complex of proteins associated with a trithorax-related SET domain protein
    • Miller, T. et al. 2001. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. U.S.A. 98: 15393-15394.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 15393-15394
    • Miller, T.1
  • 61
    • 0037192780 scopus 로고    scopus 로고
    • COMPASS, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression
    • Krogan, N.J. et al. 2002. COMPASS, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem. 277: 10753-10755.
    • (2002) J. Biol. Chem. , vol.277 , pp. 10753-10755
    • Krogan, N.J.1
  • 62
    • 84861870951 scopus 로고    scopus 로고
    • The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis
    • Shilatifard, A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Ann. Rev. Biochem. 81: 65-95.
    • (2012) Ann. Rev. Biochem. , vol.81 , pp. 65-95
    • Shilatifard, A.1
  • 63
    • 0344022572 scopus 로고    scopus 로고
    • Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
    • Ng, H.H. et al. 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11: 709-719.
    • (2003) Mol. Cell , vol.11 , pp. 709-719
    • Ng, H.H.1
  • 64
    • 57349124451 scopus 로고    scopus 로고
    • Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS
    • Wu, M. et al. 2008. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28: 7337-7344.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 7337-7344
    • Wu, M.1
  • 65
    • 34250352746 scopus 로고    scopus 로고
    • Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex
    • Lee, J.H. et al. 2007. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J. Biol. Chem. 282: 13419-13428.
    • (2007) J. Biol. Chem. , vol.282 , pp. 13419-13428
    • Lee, J.H.1
  • 66
    • 55449121084 scopus 로고    scopus 로고
    • BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression
    • Nguyen, P. et al. 2008. BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression. Mol. Cell. Biol. 28: 6720-6729.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 6720-6729
    • Nguyen, P.1
  • 67
    • 35548934558 scopus 로고    scopus 로고
    • MLL translocations, histone modifications and leukaemia stem-cell development
    • Krivtsov, A.V. & S.A. Armstrong. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7: 823-833.
    • Nat. Rev. Cancer , vol.7 , pp. 823-833
    • Krivtsov, A.V.1    Armstrong, S.A.2
  • 68
    • 20844443663 scopus 로고    scopus 로고
    • Global and Hox-specific roles for the MLL1 methyltransferase
    • Guenther, M.G. et al. 2005. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 102: 8603-8608.
    • (2005) Proc. Natl. Acad. Sci. U.S.A , vol.102 , pp. 8603-8608
    • Guenther, M.G.1
  • 69
    • 84883743029 scopus 로고    scopus 로고
    • The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells
    • Hu, D. et al. 2013. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 20: 1093-1097.
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 1093-1097
    • Hu, D.1
  • 70
    • 84891541640 scopus 로고    scopus 로고
    • H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation
    • Lee, J.-E. et al. 2013. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2: e01503.
    • (2013) eLife , vol.2 , pp. e01503
    • Lee, J.-E.1
  • 71
    • 84892856196 scopus 로고    scopus 로고
    • The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing
    • Mozzetta, C. et al. 2014. The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol. Cell 53: 277-289.
    • (2014) Mol. Cell , vol.53 , pp. 277-289
    • Mozzetta, C.1
  • 72
    • 84870573126 scopus 로고    scopus 로고
    • EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations
    • McCabe, M.T. et al. 2012. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492: 108-112.
    • (2012) Nature , vol.492 , pp. 108-112
    • McCabe, M.T.1
  • 73
    • 34848911602 scopus 로고    scopus 로고
    • Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4
    • Vermeulen, M. et al. 2007. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131: 58-69.
    • (2007) Cell , vol.131 , pp. 58-69
    • Vermeulen, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.