-
1
-
-
84940467318
-
YAP and TAZ: A nexus for Hippo signaling and beyond
-
Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 2015; 25: 499-513
-
(2015)
Trends Cell Biol
, vol.25
, pp. 499-513
-
-
Hansen, C.G.1
Moroishi, T.2
Guan, K.L.3
-
3
-
-
84898715615
-
The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease
-
Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; 141: 1614-1626
-
(2014)
Development
, vol.141
, pp. 1614-1626
-
-
Varelas, X.1
-
4
-
-
84891748709
-
The two faces of Hippo: Targeting the Hippo pathway for regenerative medicine and cancer treatment
-
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Disco 2014; 13: 63-79
-
(2014)
Nat Rev Drug Disco
, vol.13
, pp. 63-79
-
-
Johnson, R.1
Halder, G.2
-
5
-
-
84916633921
-
The biology of YAP/TAZ: Hippo signaling and beyond
-
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 2014; 94: 1287-1312
-
(2014)
Physiol Rev
, vol.94
, pp. 1287-1312
-
-
Piccolo, S.1
Dupont, S.2
Cordenonsi, M.3
-
6
-
-
47549095853
-
TEAD mediates YAP-dependent gene induction and growth control
-
Zhao B, Ye X, Yu J, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962-1971
-
(2008)
Genes Dev
, vol.22
, pp. 1962-1971
-
-
Zhao, B.1
Ye, X.2
Yu, J.3
-
7
-
-
60849138138
-
Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling
-
Ota M, Sasaki H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 2008; 135: 4059-4069
-
(2008)
Development
, vol.135
, pp. 4059-4069
-
-
Ota, M.1
Sasaki, H.2
-
8
-
-
0035873391
-
Tead/tef transcription factors utilize the activation domain of yap65, a src/yes-associated protein localized in the cytoplasm
-
Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 2001; 15: 1229-1241
-
(2001)
Genes Dev
, vol.15
, pp. 1229-1241
-
-
Vassilev, A.1
Kaneko, K.J.2
Shu, H.3
Zhao, Y.4
DePamphilis, M.L.5
-
9
-
-
36549074631
-
YAP1 increases organ size and expands undifferentiated progenitor cells
-
Camargo FD, Gokhale S, Johnnidis JB, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007; 17: 2054-2060
-
(2007)
Curr Biol
, vol.17
, pp. 2054-2060
-
-
Camargo, F.D.1
Gokhale, S.2
Johnnidis, J.B.3
-
10
-
-
35948961118
-
Inactivation of yap oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control
-
Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007; 21: 2747-2761
-
(2007)
Genes Dev
, vol.21
, pp. 2747-2761
-
-
Zhao, B.1
Wei, X.2
Li, W.3
-
11
-
-
34548636132
-
Elucidation of a universal size-control mechanism in Drosophila and mammals
-
Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120-1133
-
(2007)
Cell
, vol.130
, pp. 1120-1133
-
-
Dong, J.1
Feldmann, G.2
Huang, J.3
-
12
-
-
84902515862
-
Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP
-
Yu FX, Luo J, Mo JS, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014; 25: 822-830
-
(2014)
Cancer Cell
, vol.25
, pp. 822-830
-
-
Yu, F.X.1
Luo, J.2
Mo, J.S.3
-
13
-
-
84902482143
-
Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry
-
Feng X, Degese MS, Iglesias-Bartolome R, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25: 831-845
-
(2014)
Cancer Cell
, vol.25
, pp. 831-845
-
-
Feng, X.1
Degese, M.S.2
Iglesias-Bartolome, R.3
-
14
-
-
84939417563
-
Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the hippo pathway
-
Liu G, Yu FX, Kim YC, et al. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 2015; 34: 3536-3546
-
(2015)
Oncogene
, vol.34
, pp. 3536-3546
-
-
Liu, G.1
Yu, F.X.2
Kim, Y.C.3
-
15
-
-
53849087493
-
Expression of Yes-associated protein in common solid tumors
-
Steinhardt AA, Gayyed MF, Klein AP, et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol 2008; 39: 1582-1589
-
(2008)
Hum Pathol
, vol.39
, pp. 1582-1589
-
-
Steinhardt, A.A.1
Gayyed, M.F.2
Klein, A.P.3
-
16
-
-
84866274900
-
The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain
-
Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA 2012; 109: E2441-E2450
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E2441-E2450
-
-
Lamar, J.M.1
Stern, P.2
Liu, H.3
Schindler, J.W.4
Jiang, Z.G.5
Hynes, R.O.6
-
17
-
-
70350502865
-
Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene
-
Zhou D, Conrad C, Xia F, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16: 425-438
-
(2009)
Cancer Cell
, vol.16
, pp. 425-438
-
-
Zhou, D.1
Conrad, C.2
Xia, F.3
-
18
-
-
42349088170
-
A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells
-
Chan SW, Lim CJ, Guo K, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 2008; 68: 2592-2598
-
(2008)
Cancer Res
, vol.68
, pp. 2592-2598
-
-
Chan, S.W.1
Lim, C.J.2
Guo, K.3
-
20
-
-
84894486696
-
Nutrient regulation of the mTOR complex 1 signaling pathway
-
Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013; 35: 463-473
-
(2013)
Mol Cells
, vol.35
, pp. 463-473
-
-
Kim, S.G.1
Buel, G.R.2
Blenis, J.3
-
22
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496-1501
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
-
23
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273: 14484-14494
-
(1998)
J Biol Chem
, vol.273
, pp. 14484-14494
-
-
Hara, K.1
Yonezawa, K.2
Weng, Q.P.3
Kozlowski, M.T.4
Belham, C.5
Avruch, J.6
-
24
-
-
84922727084
-
Metabolism differential regulation of mtorc1 by leucine and glutamine
-
Jewell JL, Kim YC, Russell RC, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347: 194-198
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
-
25
-
-
77953801358
-
Regulation of mTORC1 by the Rab and Arf GTPases
-
Li L, Kim E, Yuan H, et al. Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem 2010; 285: 19705-19709
-
(2010)
J Biol Chem
, vol.285
, pp. 19705-19709
-
-
Li, L.1
Kim, E.2
Yuan, H.3
-
26
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136: 521-534
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
-
27
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163-175
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
-
28
-
-
0032528917
-
Amino acid availability regulates p70 S6 kinase and multiple translation factors
-
Wang X, Campbell LE, Miller CM, Proud CG. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 1998; 334(Pt 1): 261-267
-
(1998)
Biochem J
, vol.334
, Issue.PT1
, pp. 261-267
-
-
Wang, X.1
Campbell, L.E.2
Miller, C.M.3
Proud, C.G.4
-
29
-
-
0037155888
-
Intracellular sensing of amino acids in xenopus laevis oocytes stimulates p70 s6 kinase in a target of rapamycin-dependent manner
-
Christie GR, Hajduch E, Hundal HS, Proud CG, Taylor PM. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J Biol Chem 2002; 277: 9952-9957
-
(2002)
J Biol Chem
, vol.277
, pp. 9952-9957
-
-
Christie, G.R.1
Hajduch, E.2
Hundal, H.S.3
Proud, C.G.4
Taylor, P.M.5
-
30
-
-
0037097863
-
Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
-
Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16: 1472-1487
-
(2002)
Genes Dev
, vol.16
, pp. 1472-1487
-
-
Fingar, D.C.1
Salama, S.2
Tsou, C.3
Harlow, E.4
Blenis, J.5
-
31
-
-
84896303323
-
The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle
-
Poncet N, Mitchell FE, Ibrahim AF, et al. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PloS One 2014; 9: e89547
-
(2014)
Plos One
, vol.9
, pp. e89547
-
-
Poncet, N.1
Mitchell, F.E.2
Ibrahim, A.F.3
-
32
-
-
84876514626
-
Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
-
Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 2013; 14: 500-508
-
(2013)
Nat Immunol
, vol.14
, pp. 500-508
-
-
Sinclair, L.V.1
Rolf, J.2
Emslie, E.3
Shi, Y.B.4
Taylor, P.M.5
Cantrell, D.A.6
-
33
-
-
0032541636
-
Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family
-
Mastroberardino L, Spindler B, Pfeiffer R, et al. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 1998; 395: 288-291
-
(1998)
Nature
, vol.395
, pp. 288-291
-
-
Mastroberardino, L.1
Spindler, B.2
Pfeiffer, R.3
-
34
-
-
0037083854
-
Activation of system L heterodimeric amino acid exchangers by intracellular substrates
-
Meier C, Ristic Z, Klauser S, Verrey F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 2002; 21: 580-589
-
(2002)
EMBO J
, vol.21
, pp. 580-589
-
-
Meier, C.1
Ristic, Z.2
Klauser, S.3
Verrey, F.4
-
35
-
-
84933508767
-
A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis
-
Moroishi T, Park HW, Qin B, et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev 2015; 29: 1271-1284
-
(2015)
Genes Dev
, vol.29
, pp. 1271-1284
-
-
Moroishi, T.1
Park, H.W.2
Qin, B.3
-
36
-
-
84943327329
-
MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway
-
Meng Z, Moroishi T, Mottier-Pavie V, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 2015; 6: 8357
-
(2015)
Nat Commun
, vol.6
, pp. 8357
-
-
Meng, Z.1
Moroishi, T.2
Mottier-Pavie, V.3
-
37
-
-
84929997950
-
LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation
-
Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun 2015; 6: 7250
-
(2015)
Nat Commun
, vol.6
, pp. 7250
-
-
Milkereit, R.1
Persaud, A.2
Vanoaica, L.3
Guetg, A.4
Verrey, F.5
Rotin, D.6
-
38
-
-
79956041076
-
The role of amino acid transporters in inherited and acquired diseases
-
Broer S, Palacin M. The role of amino acid transporters in inherited and acquired diseases. Biochem J 2011; 436: 193-211
-
(2011)
Biochem J
, vol.436
, pp. 193-211
-
-
Broer, S.1
Palacin, M.2
-
39
-
-
84891377474
-
Role of amino acid transporters in amino acid sensing
-
Taylor PM. Role of amino acid transporters in amino acid sensing. Am J Clin Nutr 2014; 99: 223S-230S
-
(2014)
Am J Clin Nutr
, vol.99
, pp. 223S-230S
-
-
Taylor, P.M.1
-
40
-
-
84937253537
-
The utilization of extracellular proteins as nutrients is suppressed by mTORC1
-
Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 2015; 162: 259-270
-
(2015)
Cell
, vol.162
, pp. 259-270
-
-
Palm, W.1
Park, Y.2
Wright, K.3
Pavlova, N.N.4
Tuveson, D.A.5
Thompson, C.B.6
-
41
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10: 935-945
-
(2008)
Nat Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
42
-
-
84925970129
-
Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway
-
Mo JS, Meng Z, Kim YC, et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 2015; 17: 500-510
-
(2015)
Nat Cell Biol
, vol.17
, pp. 500-510
-
-
Mo, J.S.1
Meng, Z.2
Kim, Y.C.3
-
43
-
-
76149138881
-
Structural insights into the YAP and TEAD complex
-
Li Z, Zhao B, Wang P, et al. Structural insights into the YAP and TEAD complex. Genes Dev 2010; 24: 235-240
-
(2010)
Genes Dev
, vol.24
, pp. 235-240
-
-
Li, Z.1
Zhao, B.2
Wang, P.3
-
44
-
-
0036320205
-
Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake
-
Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002; 13: 2276-2288
-
(2002)
Mol Biol Cell
, vol.13
, pp. 2276-2288
-
-
Edinger, A.L.1
Thompson, C.B.2
-
45
-
-
84894523716
-
Making new contacts: The mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014; 15: 155-162
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
46
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res 2014; 24: 42-57
-
(2014)
Cell Res
, vol.24
, pp. 42-57
-
-
Russell, R.C.1
Yuan, H.X.2
Guan, K.L.3
-
47
-
-
84922789990
-
Nutrient-sensing mechanisms and pathways
-
Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature 2015; 517: 302-310
-
(2015)
Nature
, vol.517
, pp. 302-310
-
-
Efeyan, A.1
Comb, W.C.2
Sabatini, D.M.3
-
48
-
-
84905575240
-
The Hippo signal transduction network in skeletal and cardiac muscle
-
re4
-
Wackerhage H, Del Re DP, Judson RN, Sudol M, Sadoshima J. The Hippo signal transduction network in skeletal and cardiac muscle. Sci Signal 2014; 7: re4
-
(2014)
Sci Signal
, vol.7
-
-
Wackerhage, H.1
Del Re, D.P.2
Judson, R.N.3
Sudol, M.4
Sadoshima, J.5
-
49
-
-
84870610975
-
YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via MIR-29
-
Tumaneng K, Schlegelmilch K, Russell RC, et al. YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 2012; 14: 1322-1329
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1322-1329
-
-
Tumaneng, K.1
Schlegelmilch, K.2
Russell, R.C.3
-
50
-
-
84949089395
-
YAP1 and TAZ Activates mTORC1 pathway by regulating amino acid transporters in hepatocellular carcinoma
-
Sep 21
-
Park YY, Sohn BH, Johnson RL, et al. YAP1 and TAZ Activates mTORC1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 2015 Sep 21. doi: 10.1002/hep.28223
-
(2015)
Hepatology
-
-
Park, Y.Y.1
Sohn, B.H.2
Johnson, R.L.3
-
51
-
-
84908258052
-
Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex
-
Liang N, Zhang C, Dill P, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med 2014; 211: 2249-2263
-
(2014)
J Exp Med
, vol.211
, pp. 2249-2263
-
-
Liang, N.1
Zhang, C.2
Dill, P.3
-
52
-
-
84939233417
-
Phosphorylation of the Hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness
-
Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T, Gera J. Phosphorylation of the Hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness. J Biol Chem 2015; 290: 19387-19401
-
(2015)
J Biol Chem
, vol.290
, pp. 19387-19401
-
-
Artinian, N.1
Cloninger, C.2
Holmes, B.3
Benavides-Serrato, A.4
Bashir, T.5
Gera, J.6
-
53
-
-
84935519595
-
Amino Acid transporters in cancer and their relevance to glutamine addiction novel targets for the design of a new class of anticancer drugs
-
Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs. Cancer Res 2015; 75: 1782-1788
-
(2015)
Cancer Res
, vol.75
, pp. 1782-1788
-
-
Bhutia, Y.D.1
Babu, E.2
Ramachandran, S.3
Ganapathy, V.4
-
54
-
-
84885182528
-
Regulation of the Hippo pathway and implications for anticancer drug development
-
Park HW, Guan KL. Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci 2013; 34: 581-589
-
(2013)
Trends Pharmacol Sci
, vol.34
, pp. 581-589
-
-
Park, H.W.1
Guan, K.L.2
-
55
-
-
84917709109
-
CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction
-
Estrach S, Lee SA, Boulter E, et al. CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction. Cancer Res 2014; 74: 6878-6889
-
(2014)
Cancer Res
, vol.74
, pp. 6878-6889
-
-
Estrach, S.1
Lee, S.A.2
Boulter, E.3
-
57
-
-
12244253041
-
CD98hc (SLC3A2) mediates integrin signaling
-
Feral CC, Nishiya N, Fenczik CA, Stuhlmann H, Slepak M, Ginsberg MH. CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci USA 2005; 102: 355-360
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 355-360
-
-
Feral, C.C.1
Nishiya, N.2
Fenczik, C.A.3
Stuhlmann, H.4
Slepak, M.5
Ginsberg, M.H.6
-
58
-
-
11144242444
-
CD98hc (SLC3A2) interaction with beta 1 integrins is required for transformation
-
Henderson NC, Collis EA, Mackinnon AC, et al. CD98hc (SLC3A2) interaction with beta 1 integrins is required for transformation. J Biol Chem 2004; 279: 54731-54741
-
(2004)
J Biol Chem
, vol.279
, pp. 54731-54741
-
-
Henderson, N.C.1
Collis, E.A.2
Mackinnon, A.C.3
-
60
-
-
84891766371
-
DNASU plasmid and PSI: Biology-Materials repositories: Resources to accelerate biological research
-
Seiler CY, Park JG, Sharma A, et al. DNASU plasmid and PSI: Biology-Materials repositories: resources to accelerate biological research. Nucleic Acids Rese 2014; 42: D1253-D1260
-
(2014)
Nucleic Acids Rese
, vol.42
, pp. D1253-D1260
-
-
Seiler, C.Y.1
Park, J.G.2
Sharma, A.3
|