-
1
-
-
84903194013
-
-
InTech Open Access Publisher, Rijeka, Croatia, F. Storici (Ed.)
-
Tatum D., Li S. Nucleotide Excision Repair in S. Cerevisiae, in Dna Repair - on the Pathways to Fixing DNA Damage and Errors 2011, 97-122. InTech Open Access Publisher, Rijeka, Croatia. F. Storici (Ed.).
-
(2011)
Nucleotide Excision Repair in S. Cerevisiae, in Dna Repair - on the Pathways to Fixing DNA Damage and Errors
, pp. 97-122
-
-
Tatum, D.1
Li, S.2
-
2
-
-
0028109412
-
RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6
-
van Gool A.J., et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994, 13(22):5361-5369.
-
(1994)
EMBO J.
, vol.13
, Issue.22
, pp. 5361-5369
-
-
van Gool, A.J.1
-
3
-
-
0030050017
-
Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair
-
Verhage R.A., et al. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair. Mol. Cell Biol. 1996, 16(2):496-502.
-
(1996)
Mol. Cell Biol.
, vol.16
, Issue.2
, pp. 496-502
-
-
Verhage, R.A.1
-
4
-
-
0036845496
-
Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae
-
Li S., Smerdon M.J. Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J. 2002, 21(21):5921-5929.
-
(2002)
EMBO J.
, vol.21
, Issue.21
, pp. 5921-5929
-
-
Li, S.1
Smerdon, M.J.2
-
5
-
-
0030838622
-
Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae
-
Tijsterman M., et al. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 1997, 94(15):8027-8032.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, Issue.15
, pp. 8027-8032
-
-
Tijsterman, M.1
-
6
-
-
1842689672
-
Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes
-
Li S., Smerdon M.J. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes. J. Biol. Chem. 2004, 279(14):14418-14426.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.14
, pp. 14418-14426
-
-
Li, S.1
Smerdon, M.J.2
-
7
-
-
33846001346
-
Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements
-
Li S., et al. Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements. J. Biol. Chem. 2006, 281(48):36643-36651.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.48
, pp. 36643-36651
-
-
Li, S.1
-
8
-
-
35348929362
-
The roles of Rad1 and Rad26 in repairing repressed and actively transcribed genes in yeast
-
Li S., et al. The roles of Rad1 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair (Amst) 2007, 6(11):1596-1606.
-
(2007)
DNA Repair (Amst)
, vol.6
, Issue.11
, pp. 1596-1606
-
-
Li, S.1
-
9
-
-
33846984935
-
Transcriptional noise and the fidelity of initiation by RNA polymerase II
-
Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat. Struct. Mol. Biol. 2007, 14(2):103-105.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, Issue.2
, pp. 103-105
-
-
Struhl, K.1
-
10
-
-
84902075576
-
Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis
-
Xu L., et al. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014, 19:71-83.
-
(2014)
DNA Repair (Amst)
, vol.19
, pp. 71-83
-
-
Xu, L.1
-
11
-
-
84859710196
-
Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage
-
Walmacq C., et al. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell 2012, 46(1):18-29.
-
(2012)
Mol. Cell
, vol.46
, Issue.1
, pp. 18-29
-
-
Walmacq, C.1
-
12
-
-
84859704062
-
An arresting development in transcription
-
Ellenberger T. An arresting development in transcription. Mol. Cell 2012, 46(1):3-4.
-
(2012)
Mol. Cell
, vol.46
, Issue.1
, pp. 3-4
-
-
Ellenberger, T.1
-
13
-
-
84941073386
-
Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair
-
Li W., et al. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Nucleic Acids Res. 2014, 42(21):13242-13253.
-
(2014)
Nucleic Acids Res.
, vol.42
, Issue.21
, pp. 13242-13253
-
-
Li, W.1
-
14
-
-
0029744847
-
RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase
-
Guzder S.N., et al. RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase. J. Biol. Chem. 1996, 271(31):18314-18317.
-
(1996)
J. Biol. Chem.
, vol.271
, Issue.31
, pp. 18314-18317
-
-
Guzder, S.N.1
-
15
-
-
84924347292
-
Regulation of the Rhp26ERCC6/CSB chromatin remodeler by a novel conserved leucine latch motif
-
Wang L., et al. Regulation of the Rhp26ERCC6/CSB chromatin remodeler by a novel conserved leucine latch motif. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(52):18566-18571.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, Issue.52
, pp. 18566-18571
-
-
Wang, L.1
-
16
-
-
74749084156
-
UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression
-
Lake R.J., et al. UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression. Mol. Cell 2010, 37(2):235-246.
-
(2010)
Mol. Cell
, vol.37
, Issue.2
, pp. 235-246
-
-
Lake, R.J.1
-
17
-
-
73549118561
-
A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae
-
Taschner M., et al. A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol. Cell Biol. 2010, 30(2):436-446.
-
(2010)
Mol. Cell Biol.
, vol.30
, Issue.2
, pp. 436-446
-
-
Taschner, M.1
-
18
-
-
4444332513
-
Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage
-
de Waard H., et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol. Cell Biol. 2004, 24(18):7941-7948.
-
(2004)
Mol. Cell Biol.
, vol.24
, Issue.18
, pp. 7941-7948
-
-
de Waard, H.1
-
19
-
-
77953091336
-
A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair
-
Anindya R., et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 2010, 38(5):637-648.
-
(2010)
Mol. Cell
, vol.38
, Issue.5
, pp. 637-648
-
-
Anindya, R.1
-
20
-
-
33744795969
-
CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
-
Groisman R., et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006, 20(11):1429-1434.
-
(2006)
Genes Dev.
, vol.20
, Issue.11
, pp. 1429-1434
-
-
Groisman, R.1
-
21
-
-
0030667078
-
Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes
-
Tantin D., Kansal A., Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell Biol. 1997, 17(12):6803-6814.
-
(1997)
Mol. Cell Biol.
, vol.17
, Issue.12
, pp. 6803-6814
-
-
Tantin, D.1
Kansal, A.2
Carey, M.3
-
22
-
-
0030826732
-
The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex
-
van Gool A.J., et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 1997, 16(19):5955-5965.
-
(1997)
EMBO J.
, vol.16
, Issue.19
, pp. 5955-5965
-
-
van Gool, A.J.1
-
23
-
-
77950513763
-
Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo
-
Malik S., et al. Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res. 2010, 38(5):1461-1477.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.5
, pp. 1461-1477
-
-
Malik, S.1
-
24
-
-
0037148786
-
A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
-
Woudstra E.C., et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 2002, 415(6874):929-933.
-
(2002)
Nature
, vol.415
, Issue.6874
, pp. 929-933
-
-
Woudstra, E.C.1
-
25
-
-
0020066520
-
Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum
-
Mayne L.V., Lehmann A.R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 1982, 42(4):1473-1478.
-
(1982)
Cancer Res.
, vol.42
, Issue.4
, pp. 1473-1478
-
-
Mayne, L.V.1
Lehmann, A.R.2
-
26
-
-
0030658835
-
Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair
-
Reagan M.S., Friedberg E.C. Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res. 1997, 25(21):4257-4263.
-
(1997)
Nucleic Acids Res.
, vol.25
, Issue.21
, pp. 4257-4263
-
-
Reagan, M.S.1
Friedberg, E.C.2
-
27
-
-
0034641753
-
UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II
-
Rockx D.A., et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(19):10503-10508.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, Issue.19
, pp. 10503-10508
-
-
Rockx, D.A.1
-
28
-
-
0031463309
-
Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP
-
Vichi P., et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 1997, 16(24):7444-7456.
-
(1997)
EMBO J.
, vol.16
, Issue.24
, pp. 7444-7456
-
-
Vichi, P.1
-
29
-
-
0031943276
-
Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26
-
You Z., Feaver W.J., Friedberg E.C. Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26. Mol. Cell Biol. 1998, 18(5):2668-2676.
-
(1998)
Mol. Cell Biol.
, vol.18
, Issue.5
, pp. 2668-2676
-
-
You, Z.1
Feaver, W.J.2
Friedberg, E.C.3
-
30
-
-
84887117259
-
ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair
-
Mourgues S., et al. ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(44):17927-17932.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.44
, pp. 17927-17932
-
-
Mourgues, S.1
-
31
-
-
0035201056
-
Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II
-
Lee S.K., et al. Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol. Cell Biol. 2001, 21(24):8651-8656.
-
(2001)
Mol. Cell Biol.
, vol.21
, Issue.24
, pp. 8651-8656
-
-
Lee, S.K.1
-
32
-
-
0037188888
-
Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. Implications for Cockayne syndrome
-
Lee S.K., et al. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. Implications for Cockayne syndrome. Cell 2002, 109(7):823-834.
-
(2002)
Cell
, vol.109
, Issue.7
, pp. 823-834
-
-
Lee, S.K.1
-
33
-
-
0029784467
-
Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome
-
Habraken Y., et al. Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc. Natl. Acad. Sci. U. S. A. 1996, 93(20):10718-10722.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, Issue.20
, pp. 10718-10722
-
-
Habraken, Y.1
-
34
-
-
0029157378
-
Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions
-
Eisen J.A., Sweder K.S., Hanawalt P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 1995, 23(14):2715-2723.
-
(1995)
Nucleic Acids Res.
, vol.23
, Issue.14
, pp. 2715-2723
-
-
Eisen, J.A.1
Sweder, K.S.2
Hanawalt, P.C.3
-
35
-
-
0033806183
-
ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
-
Citterio E., et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell Biol. 2000, 20(20):7643-7653.
-
(2000)
Mol. Cell Biol.
, vol.20
, Issue.20
, pp. 7643-7653
-
-
Citterio, E.1
-
36
-
-
84876875641
-
ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair
-
Cho I., et al. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet. 2013, 9(4):e1003407.
-
(2013)
PLoS Genet.
, vol.9
, Issue.4
-
-
Cho, I.1
-
37
-
-
3042652965
-
In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand
-
Bucheli M., Sweder K. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Mol. Microbiol. 2004, 52(6):1653-1663.
-
(2004)
Mol. Microbiol.
, vol.52
, Issue.6
, pp. 1653-1663
-
-
Bucheli, M.1
Sweder, K.2
-
38
-
-
48249103199
-
Structure of eukaryotic RNA polymerases
-
Cramer P., et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 2008, 37:337-352.
-
(2008)
Annu. Rev. Biophys.
, vol.37
, pp. 337-352
-
-
Cramer, P.1
-
39
-
-
84872424651
-
The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation
-
Hartzog G.A., Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta 2013, 1829(1):105-115.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, Issue.1
, pp. 105-115
-
-
Hartzog, G.A.1
Fu, J.2
-
40
-
-
0034388027
-
Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair
-
Jansen L.E., et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 2000, 19(23):6498-6507.
-
(2000)
EMBO J.
, vol.19
, Issue.23
, pp. 6498-6507
-
-
Jansen, L.E.1
-
41
-
-
77949312619
-
The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair
-
Ding B., LeJeune D., Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J. Biol. Chem. 2010, 285(8):5317-5326.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.8
, pp. 5317-5326
-
-
Ding, B.1
LeJeune, D.2
Li, S.3
-
42
-
-
84903154637
-
Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair
-
Li W., Giles C., Li S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res. 2014, 42(11):7069-7083.
-
(2014)
Nucleic Acids Res.
, vol.42
, Issue.11
, pp. 7069-7083
-
-
Li, W.1
Giles, C.2
Li, S.3
-
43
-
-
79953779997
-
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
-
Martinez-Rucobo F.W., et al. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 2011, 30(7):1302-1310.
-
(2011)
EMBO J.
, vol.30
, Issue.7
, pp. 1302-1310
-
-
Martinez-Rucobo, F.W.1
-
44
-
-
77953277032
-
The Paf1 complex: platform or player in RNA polymerase II transcription?
-
Jaehning J.A. The Paf1 complex: platform or player in RNA polymerase II transcription?. Biochim. Biophys. Acta 2010, 1799(5-6):379-388.
-
(2010)
Biochim. Biophys. Acta
, vol.1799
, Issue.5-6
, pp. 379-388
-
-
Jaehning, J.A.1
-
45
-
-
61449213011
-
Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair
-
Gaillard H., et al. Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair. PLoS Genet. 2009, 5(2):e1000364.
-
(2009)
PLoS Genet.
, vol.5
, Issue.2
-
-
Gaillard, H.1
-
46
-
-
80052189528
-
Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair
-
Tatum D., et al. Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair. J. Biol. Chem. 2011, 286(35):30304-30313.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.35
, pp. 30304-30313
-
-
Tatum, D.1
-
47
-
-
84886402728
-
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin
-
Wier A.D., et al. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(43):17290-17295.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.43
, pp. 17290-17295
-
-
Wier, A.D.1
-
48
-
-
33846980409
-
CPD damage recognition by transcribing RNA polymerase II
-
Brueckner F., et al. CPD damage recognition by transcribing RNA polymerase II. Science 2007, 315(5813):859-862.
-
(2007)
Science
, vol.315
, Issue.5813
, pp. 859-862
-
-
Brueckner, F.1
-
49
-
-
36849078192
-
Mechanism of transcriptional stalling at cisplatin-damaged DNA
-
Damsma G.E., et al. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol. 2007, 14(12):1127-1133.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, Issue.12
, pp. 1127-1133
-
-
Damsma, G.E.1
-
50
-
-
77953112483
-
X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct
-
Wang D., et al. X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proc. Natl. Acad. Sci. 2010, 107(21):9584-9589.
-
(2010)
Proc. Natl. Acad. Sci.
, vol.107
, Issue.21
, pp. 9584-9589
-
-
Wang, D.1
-
51
-
-
0036258264
-
Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases
-
Lee S.K., et al. Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol. Cell Biol. 2002, 22(12):4383-4389.
-
(2002)
Mol. Cell Biol.
, vol.22
, Issue.12
, pp. 4383-4389
-
-
Lee, S.K.1
-
52
-
-
0037215540
-
The stalling of transcription at abasic sites is highly mutagenic
-
Yu S.L., et al. The stalling of transcription at abasic sites is highly mutagenic. Mol. Cell. Biol. 2003, 23(1):382-388.
-
(2003)
Mol. Cell. Biol.
, vol.23
, Issue.1
, pp. 382-388
-
-
Yu, S.L.1
-
53
-
-
0030822591
-
Cockayne syndrome group B protein enhances elongation by RNA polymerase II
-
Selby C.P., Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 1997, 94(21):11205-11209.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, Issue.21
, pp. 11205-11209
-
-
Selby, C.P.1
Sancar, A.2
|