메뉴 건너뛰기




Volumn 36, Issue , 2015, Pages 43-48

Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26

Author keywords

Rad26; RNA polymerase II; Saccharomyces cerevisiae; Transcription coupled nucleotide excision repair; Transcription elongation factors

Indexed keywords

ADENOSINE TRIPHOSPHATASE; DNA BINDING PROTEIN; RAD26 PROTEIN; RNA POLYMERASE II; RPB1 PROTEIN; RPB4 PROTEIN; SPT4 PROTEIN; SPT5 PROTEIN; TATA BINDING PROTEIN; TRANSCRIPTION ELONGATION FACTOR; UNCLASSIFIED DRUG; FUNGAL DNA; RAD26 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84948845756     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.09.006     Document Type: Review
Times cited : (32)

References (53)
  • 2
    • 0028109412 scopus 로고
    • RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6
    • van Gool A.J., et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994, 13(22):5361-5369.
    • (1994) EMBO J. , vol.13 , Issue.22 , pp. 5361-5369
    • van Gool, A.J.1
  • 3
    • 0030050017 scopus 로고    scopus 로고
    • Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair
    • Verhage R.A., et al. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair. Mol. Cell Biol. 1996, 16(2):496-502.
    • (1996) Mol. Cell Biol. , vol.16 , Issue.2 , pp. 496-502
    • Verhage, R.A.1
  • 4
    • 0036845496 scopus 로고    scopus 로고
    • Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae
    • Li S., Smerdon M.J. Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J. 2002, 21(21):5921-5929.
    • (2002) EMBO J. , vol.21 , Issue.21 , pp. 5921-5929
    • Li, S.1    Smerdon, M.J.2
  • 5
    • 0030838622 scopus 로고    scopus 로고
    • Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae
    • Tijsterman M., et al. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 1997, 94(15):8027-8032.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , Issue.15 , pp. 8027-8032
    • Tijsterman, M.1
  • 6
    • 1842689672 scopus 로고    scopus 로고
    • Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes
    • Li S., Smerdon M.J. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes. J. Biol. Chem. 2004, 279(14):14418-14426.
    • (2004) J. Biol. Chem. , vol.279 , Issue.14 , pp. 14418-14426
    • Li, S.1    Smerdon, M.J.2
  • 7
    • 33846001346 scopus 로고    scopus 로고
    • Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements
    • Li S., et al. Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements. J. Biol. Chem. 2006, 281(48):36643-36651.
    • (2006) J. Biol. Chem. , vol.281 , Issue.48 , pp. 36643-36651
    • Li, S.1
  • 8
    • 35348929362 scopus 로고    scopus 로고
    • The roles of Rad1 and Rad26 in repairing repressed and actively transcribed genes in yeast
    • Li S., et al. The roles of Rad1 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair (Amst) 2007, 6(11):1596-1606.
    • (2007) DNA Repair (Amst) , vol.6 , Issue.11 , pp. 1596-1606
    • Li, S.1
  • 9
    • 33846984935 scopus 로고    scopus 로고
    • Transcriptional noise and the fidelity of initiation by RNA polymerase II
    • Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat. Struct. Mol. Biol. 2007, 14(2):103-105.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , Issue.2 , pp. 103-105
    • Struhl, K.1
  • 10
    • 84902075576 scopus 로고    scopus 로고
    • Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis
    • Xu L., et al. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014, 19:71-83.
    • (2014) DNA Repair (Amst) , vol.19 , pp. 71-83
    • Xu, L.1
  • 11
    • 84859710196 scopus 로고    scopus 로고
    • Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage
    • Walmacq C., et al. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell 2012, 46(1):18-29.
    • (2012) Mol. Cell , vol.46 , Issue.1 , pp. 18-29
    • Walmacq, C.1
  • 12
    • 84859704062 scopus 로고    scopus 로고
    • An arresting development in transcription
    • Ellenberger T. An arresting development in transcription. Mol. Cell 2012, 46(1):3-4.
    • (2012) Mol. Cell , vol.46 , Issue.1 , pp. 3-4
    • Ellenberger, T.1
  • 13
    • 84941073386 scopus 로고    scopus 로고
    • Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair
    • Li W., et al. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Nucleic Acids Res. 2014, 42(21):13242-13253.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.21 , pp. 13242-13253
    • Li, W.1
  • 14
    • 0029744847 scopus 로고    scopus 로고
    • RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase
    • Guzder S.N., et al. RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase. J. Biol. Chem. 1996, 271(31):18314-18317.
    • (1996) J. Biol. Chem. , vol.271 , Issue.31 , pp. 18314-18317
    • Guzder, S.N.1
  • 15
    • 84924347292 scopus 로고    scopus 로고
    • Regulation of the Rhp26ERCC6/CSB chromatin remodeler by a novel conserved leucine latch motif
    • Wang L., et al. Regulation of the Rhp26ERCC6/CSB chromatin remodeler by a novel conserved leucine latch motif. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(52):18566-18571.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.52 , pp. 18566-18571
    • Wang, L.1
  • 16
    • 74749084156 scopus 로고    scopus 로고
    • UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression
    • Lake R.J., et al. UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression. Mol. Cell 2010, 37(2):235-246.
    • (2010) Mol. Cell , vol.37 , Issue.2 , pp. 235-246
    • Lake, R.J.1
  • 17
    • 73549118561 scopus 로고    scopus 로고
    • A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae
    • Taschner M., et al. A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol. Cell Biol. 2010, 30(2):436-446.
    • (2010) Mol. Cell Biol. , vol.30 , Issue.2 , pp. 436-446
    • Taschner, M.1
  • 18
    • 4444332513 scopus 로고    scopus 로고
    • Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage
    • de Waard H., et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol. Cell Biol. 2004, 24(18):7941-7948.
    • (2004) Mol. Cell Biol. , vol.24 , Issue.18 , pp. 7941-7948
    • de Waard, H.1
  • 19
    • 77953091336 scopus 로고    scopus 로고
    • A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair
    • Anindya R., et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 2010, 38(5):637-648.
    • (2010) Mol. Cell , vol.38 , Issue.5 , pp. 637-648
    • Anindya, R.1
  • 20
    • 33744795969 scopus 로고    scopus 로고
    • CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
    • Groisman R., et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006, 20(11):1429-1434.
    • (2006) Genes Dev. , vol.20 , Issue.11 , pp. 1429-1434
    • Groisman, R.1
  • 21
    • 0030667078 scopus 로고    scopus 로고
    • Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes
    • Tantin D., Kansal A., Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell Biol. 1997, 17(12):6803-6814.
    • (1997) Mol. Cell Biol. , vol.17 , Issue.12 , pp. 6803-6814
    • Tantin, D.1    Kansal, A.2    Carey, M.3
  • 22
    • 0030826732 scopus 로고    scopus 로고
    • The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex
    • van Gool A.J., et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 1997, 16(19):5955-5965.
    • (1997) EMBO J. , vol.16 , Issue.19 , pp. 5955-5965
    • van Gool, A.J.1
  • 23
    • 77950513763 scopus 로고    scopus 로고
    • Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo
    • Malik S., et al. Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res. 2010, 38(5):1461-1477.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.5 , pp. 1461-1477
    • Malik, S.1
  • 24
    • 0037148786 scopus 로고    scopus 로고
    • A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
    • Woudstra E.C., et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 2002, 415(6874):929-933.
    • (2002) Nature , vol.415 , Issue.6874 , pp. 929-933
    • Woudstra, E.C.1
  • 25
    • 0020066520 scopus 로고
    • Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum
    • Mayne L.V., Lehmann A.R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 1982, 42(4):1473-1478.
    • (1982) Cancer Res. , vol.42 , Issue.4 , pp. 1473-1478
    • Mayne, L.V.1    Lehmann, A.R.2
  • 26
    • 0030658835 scopus 로고    scopus 로고
    • Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair
    • Reagan M.S., Friedberg E.C. Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res. 1997, 25(21):4257-4263.
    • (1997) Nucleic Acids Res. , vol.25 , Issue.21 , pp. 4257-4263
    • Reagan, M.S.1    Friedberg, E.C.2
  • 27
    • 0034641753 scopus 로고    scopus 로고
    • UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II
    • Rockx D.A., et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(19):10503-10508.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , Issue.19 , pp. 10503-10508
    • Rockx, D.A.1
  • 28
    • 0031463309 scopus 로고    scopus 로고
    • Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP
    • Vichi P., et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 1997, 16(24):7444-7456.
    • (1997) EMBO J. , vol.16 , Issue.24 , pp. 7444-7456
    • Vichi, P.1
  • 29
    • 0031943276 scopus 로고    scopus 로고
    • Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26
    • You Z., Feaver W.J., Friedberg E.C. Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26. Mol. Cell Biol. 1998, 18(5):2668-2676.
    • (1998) Mol. Cell Biol. , vol.18 , Issue.5 , pp. 2668-2676
    • You, Z.1    Feaver, W.J.2    Friedberg, E.C.3
  • 30
    • 84887117259 scopus 로고    scopus 로고
    • ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair
    • Mourgues S., et al. ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(44):17927-17932.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.44 , pp. 17927-17932
    • Mourgues, S.1
  • 31
    • 0035201056 scopus 로고    scopus 로고
    • Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II
    • Lee S.K., et al. Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol. Cell Biol. 2001, 21(24):8651-8656.
    • (2001) Mol. Cell Biol. , vol.21 , Issue.24 , pp. 8651-8656
    • Lee, S.K.1
  • 32
    • 0037188888 scopus 로고    scopus 로고
    • Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. Implications for Cockayne syndrome
    • Lee S.K., et al. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. Implications for Cockayne syndrome. Cell 2002, 109(7):823-834.
    • (2002) Cell , vol.109 , Issue.7 , pp. 823-834
    • Lee, S.K.1
  • 33
    • 0029784467 scopus 로고    scopus 로고
    • Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome
    • Habraken Y., et al. Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc. Natl. Acad. Sci. U. S. A. 1996, 93(20):10718-10722.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , Issue.20 , pp. 10718-10722
    • Habraken, Y.1
  • 34
    • 0029157378 scopus 로고
    • Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions
    • Eisen J.A., Sweder K.S., Hanawalt P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 1995, 23(14):2715-2723.
    • (1995) Nucleic Acids Res. , vol.23 , Issue.14 , pp. 2715-2723
    • Eisen, J.A.1    Sweder, K.S.2    Hanawalt, P.C.3
  • 35
    • 0033806183 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
    • Citterio E., et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell Biol. 2000, 20(20):7643-7653.
    • (2000) Mol. Cell Biol. , vol.20 , Issue.20 , pp. 7643-7653
    • Citterio, E.1
  • 36
    • 84876875641 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair
    • Cho I., et al. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet. 2013, 9(4):e1003407.
    • (2013) PLoS Genet. , vol.9 , Issue.4
    • Cho, I.1
  • 37
    • 3042652965 scopus 로고    scopus 로고
    • In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand
    • Bucheli M., Sweder K. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Mol. Microbiol. 2004, 52(6):1653-1663.
    • (2004) Mol. Microbiol. , vol.52 , Issue.6 , pp. 1653-1663
    • Bucheli, M.1    Sweder, K.2
  • 38
    • 48249103199 scopus 로고    scopus 로고
    • Structure of eukaryotic RNA polymerases
    • Cramer P., et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 2008, 37:337-352.
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 337-352
    • Cramer, P.1
  • 39
    • 84872424651 scopus 로고    scopus 로고
    • The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation
    • Hartzog G.A., Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta 2013, 1829(1):105-115.
    • (2013) Biochim. Biophys. Acta , vol.1829 , Issue.1 , pp. 105-115
    • Hartzog, G.A.1    Fu, J.2
  • 40
    • 0034388027 scopus 로고    scopus 로고
    • Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair
    • Jansen L.E., et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 2000, 19(23):6498-6507.
    • (2000) EMBO J. , vol.19 , Issue.23 , pp. 6498-6507
    • Jansen, L.E.1
  • 41
    • 77949312619 scopus 로고    scopus 로고
    • The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair
    • Ding B., LeJeune D., Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J. Biol. Chem. 2010, 285(8):5317-5326.
    • (2010) J. Biol. Chem. , vol.285 , Issue.8 , pp. 5317-5326
    • Ding, B.1    LeJeune, D.2    Li, S.3
  • 42
    • 84903154637 scopus 로고    scopus 로고
    • Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair
    • Li W., Giles C., Li S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res. 2014, 42(11):7069-7083.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.11 , pp. 7069-7083
    • Li, W.1    Giles, C.2    Li, S.3
  • 43
    • 79953779997 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
    • Martinez-Rucobo F.W., et al. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 2011, 30(7):1302-1310.
    • (2011) EMBO J. , vol.30 , Issue.7 , pp. 1302-1310
    • Martinez-Rucobo, F.W.1
  • 44
    • 77953277032 scopus 로고    scopus 로고
    • The Paf1 complex: platform or player in RNA polymerase II transcription?
    • Jaehning J.A. The Paf1 complex: platform or player in RNA polymerase II transcription?. Biochim. Biophys. Acta 2010, 1799(5-6):379-388.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.5-6 , pp. 379-388
    • Jaehning, J.A.1
  • 45
    • 61449213011 scopus 로고    scopus 로고
    • Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair
    • Gaillard H., et al. Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair. PLoS Genet. 2009, 5(2):e1000364.
    • (2009) PLoS Genet. , vol.5 , Issue.2
    • Gaillard, H.1
  • 46
    • 80052189528 scopus 로고    scopus 로고
    • Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair
    • Tatum D., et al. Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair. J. Biol. Chem. 2011, 286(35):30304-30313.
    • (2011) J. Biol. Chem. , vol.286 , Issue.35 , pp. 30304-30313
    • Tatum, D.1
  • 47
    • 84886402728 scopus 로고    scopus 로고
    • Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin
    • Wier A.D., et al. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(43):17290-17295.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.43 , pp. 17290-17295
    • Wier, A.D.1
  • 48
    • 33846980409 scopus 로고    scopus 로고
    • CPD damage recognition by transcribing RNA polymerase II
    • Brueckner F., et al. CPD damage recognition by transcribing RNA polymerase II. Science 2007, 315(5813):859-862.
    • (2007) Science , vol.315 , Issue.5813 , pp. 859-862
    • Brueckner, F.1
  • 49
    • 36849078192 scopus 로고    scopus 로고
    • Mechanism of transcriptional stalling at cisplatin-damaged DNA
    • Damsma G.E., et al. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol. 2007, 14(12):1127-1133.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , Issue.12 , pp. 1127-1133
    • Damsma, G.E.1
  • 50
    • 77953112483 scopus 로고    scopus 로고
    • X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct
    • Wang D., et al. X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proc. Natl. Acad. Sci. 2010, 107(21):9584-9589.
    • (2010) Proc. Natl. Acad. Sci. , vol.107 , Issue.21 , pp. 9584-9589
    • Wang, D.1
  • 51
    • 0036258264 scopus 로고    scopus 로고
    • Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases
    • Lee S.K., et al. Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol. Cell Biol. 2002, 22(12):4383-4389.
    • (2002) Mol. Cell Biol. , vol.22 , Issue.12 , pp. 4383-4389
    • Lee, S.K.1
  • 52
    • 0037215540 scopus 로고    scopus 로고
    • The stalling of transcription at abasic sites is highly mutagenic
    • Yu S.L., et al. The stalling of transcription at abasic sites is highly mutagenic. Mol. Cell. Biol. 2003, 23(1):382-388.
    • (2003) Mol. Cell. Biol. , vol.23 , Issue.1 , pp. 382-388
    • Yu, S.L.1
  • 53
    • 0030822591 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein enhances elongation by RNA polymerase II
    • Selby C.P., Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 1997, 94(21):11205-11209.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , Issue.21 , pp. 11205-11209
    • Selby, C.P.1    Sancar, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.