메뉴 건너뛰기




Volumn 110, Issue 44, 2013, Pages 17927-17932

ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair

Author keywords

[No Author keywords available]

Indexed keywords

CELL DNA; ELEVEN NINETEEN LYSINE RICH LEUKEMIA; GENERAL TRANSCRIPTION FACTOR; LYSINE; RNA POLYMERASE II; UNCLASSIFIED DRUG;

EID: 84887117259     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1305009110     Document Type: Article
Times cited : (40)

References (35)
  • 1
    • 0942268166 scopus 로고    scopus 로고
    • DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy
    • Lehmann AR (2003) DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85(11):1101-1111.
    • (2003) Biochimie , vol.85 , Issue.11 , pp. 1101-1111
    • Lehmann, A.R.1
  • 2
    • 0037115936 scopus 로고    scopus 로고
    • Subpathways of nucleotide excision repair and their regulation
    • Hanawalt PC (2002) Subpathways of nucleotide excision repair and their regulation. Oncogene 21(58):8949-8956.
    • (2002) Oncogene , vol.21 , Issue.58 , pp. 8949-8956
    • Hanawalt, P.C.1
  • 3
    • 46349091030 scopus 로고    scopus 로고
    • Nucleotide excision repair driven by the dissociation of CAK from TFIIH
    • Coin F, et al. (2008) Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 31(1):9-20.
    • (2008) Mol Cell , vol.31 , Issue.1 , pp. 9-20
    • Coin, F.1
  • 4
    • 84255162048 scopus 로고    scopus 로고
    • The little elongation complex regulates small nuclear RNA transcription
    • Smith ER, et al. (2011) The little elongation complex regulates small nuclear RNA transcription. Mol Cell 44(6):954-965.
    • (2011) Mol Cell , vol.44 , Issue.6 , pp. 954-965
    • Smith, E.R.1
  • 5
    • 0029879664 scopus 로고    scopus 로고
    • An RNA polymerase II elongation factor encoded by the human ELL gene
    • Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW (1996) An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271(5257): 1873-1876.
    • (1996) Science , vol.271 , Issue.5257 , pp. 1873-1876
    • Shilatifard, A.1    Lane, W.S.2    Jackson, K.W.3    Conaway, R.C.4    Conaway, J.W.5
  • 6
    • 75949126139 scopus 로고    scopus 로고
    • AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia
    • Lin C, et al. (2010) AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 37(3):429-437.
    • (2010) Mol Cell , vol.37 , Issue.3 , pp. 429-437
    • Lin, C.1
  • 7
    • 77957128551 scopus 로고    scopus 로고
    • Licensed to elongate: A molecular mechanism for MLL-based leukaemogenesis
    • Mohan M, Lin C, Guest E, Shilatifard A (2010) Licensed to elongate: A molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 10(10):721-728.
    • (2010) Nat Rev Cancer , vol.10 , Issue.10 , pp. 721-728
    • Mohan, M.1    Lin, C.2    Guest, E.3    Shilatifard, A.4
  • 8
    • 84864020768 scopus 로고    scopus 로고
    • The super elongation complex family of RNA polymerase II elongation factors: Gene target specificity and transcriptional output
    • Luo Z, et al. (2012) The super elongation complex family of RNA polymerase II elongation factors: Gene target specificity and transcriptional output. Mol Cell Biol 32(13):2608-2617.
    • (2012) Mol Cell Biol , vol.32 , Issue.13 , pp. 2608-2617
    • Luo, Z.1
  • 9
    • 70350518308 scopus 로고    scopus 로고
    • Differentiation driven changes in the dynamic organization of Basal transcription initiation
    • Giglia-Mari G, et al. (2009) Differentiation driven changes in the dynamic organization of Basal transcription initiation. PLoS Biol 7(10):e1000220.
    • (2009) PLoS Biol , vol.7 , Issue.10
    • Giglia-Mari, G.1
  • 10
    • 84864809026 scopus 로고    scopus 로고
    • Label-free quantification and shotgun analysis of complex proteomes by 1D SDS-PAGE/nanoLC-MS: Evaluation for the large-scale analysis of inflammatory human endothelial cells
    • Gautier, V., et al. (2012) Label-free quantification and shotgun analysis of complex proteomes by 1D SDS-PAGE/nanoLC-MS: Evaluation for the large-scale analysis of inflammatory human endothelial cells Mol Cell Proteomics 11(8):527-539.
    • (2012) Mol Cell Proteomics , vol.11 , Issue.8 , pp. 527-539
    • Gautier, V.1
  • 11
    • 34247256517 scopus 로고    scopus 로고
    • XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP-G/CS patients
    • Ito S, et al. (2007) XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26(2):231-243.
    • (2007) Mol Cell , vol.26 , Issue.2 , pp. 231-243
    • Ito, S.1
  • 12
    • 33745199653 scopus 로고    scopus 로고
    • Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells
    • Giglia-Mari G, et al. (2006) Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLoS Biol 4(6):e156.
    • (2006) PLoS Biol , vol.4 , Issue.6
    • Giglia-Mari, G.1
  • 13
    • 18744374129 scopus 로고    scopus 로고
    • Rapid switching of TFIIH between RNA polymerase i and II transcription and DNA repair in vivo
    • Hoogstraten D, et al. (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10(5):1163-1174.
    • (2002) Mol Cell , vol.10 , Issue.5 , pp. 1163-1174
    • Hoogstraten, D.1
  • 14
    • 79960378814 scopus 로고    scopus 로고
    • Dynamics of mammalian NER proteins
    • VermeulenW (2011) Dynamics of mammalian NER proteins. DNA Repair (Amst) 10(7): 760-771.
    • (2011) DNA Repair (Amst) , vol.10 , Issue.7 , pp. 760-771
    • Vermeulen, W.1
  • 16
    • 0028885363 scopus 로고
    • Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome
    • Svejstrup JQ, et al. (1995) Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome. Cell 80(1):21-28.
    • (1995) Cell , vol.80 , Issue.1 , pp. 21-28
    • Svejstrup, J.Q.1
  • 17
    • 84866142231 scopus 로고    scopus 로고
    • Generation of DNA single-strand displacement by compromised nucleotide excision repair
    • Godon C, et al. (2012) Generation of DNA single-strand displacement by compromised nucleotide excision repair. EMBO J 31(17):3550-3563.
    • (2012) EMBO J , vol.31 , Issue.17 , pp. 3550-3563
    • Godon, C.1
  • 18
    • 33747194740 scopus 로고    scopus 로고
    • Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
    • Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LH (2006) Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell 23(4):471-482.
    • (2006) Mol Cell , vol.23 , Issue.4 , pp. 471-482
    • Fousteri, M.1    Vermeulen, W.2    Van Zeeland, A.A.3    Mullenders, L.H.4
  • 19
    • 0347724033 scopus 로고    scopus 로고
    • Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption
    • Meldrum RA, Botchway SW, Wharton CW, Hirst GJ (2003) Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption. EMBO Rep 4(12):1144-1149.
    • (2003) EMBO Rep , vol.4 , Issue.12 , pp. 1144-1149
    • Meldrum, R.A.1    Botchway, S.W.2    Wharton, C.W.3    Hirst, G.J.4
  • 20
    • 24044449257 scopus 로고    scopus 로고
    • Mathematical modeling of nucleotide excision repair reveals efficiency of sequential assembly strategies
    • Politi A, et al. (2005) Mathematical modeling of nucleotide excision repair reveals efficiency of sequential assembly strategies. Mol Cell 19(5):679-690.
    • (2005) Mol Cell , vol.19 , Issue.5 , pp. 679-690
    • Politi, A.1
  • 21
    • 0028600051 scopus 로고
    • The MO15 cell cycle kinase is associated with the TFIIH transcription- DNA repair factor
    • Roy R, et al. (1994) The MO15 cell cycle kinase is associated with the TFIIH transcription- DNA repair factor. Cell 79(6):1093-1101.
    • (1994) Cell , vol.79 , Issue.6 , pp. 1093-1101
    • Roy, R.1
  • 22
    • 62549104281 scopus 로고    scopus 로고
    • A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU)
    • Limsirichaikul S, et al. (2009) A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res 37(4):e31.
    • (2009) Nucleic Acids Res , vol.37 , Issue.4
    • Limsirichaikul, S.1
  • 23
    • 0029870677 scopus 로고    scopus 로고
    • Reaction mechanism of human DNA repair excision nuclease
    • Mu D, Hsu DS, Sancar A (1996) Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 271(14):8285-8294.
    • (1996) J Biol Chem , vol.271 , Issue.14 , pp. 8285-8294
    • Mu, D.1    Hsu, D.S.2    Sancar, A.3
  • 24
    • 34247354227 scopus 로고    scopus 로고
    • Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells
    • Matsumoto M, et al. (2007) Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J Cell Sci 120(Pt 6): 1104-1112.
    • (2007) J Cell Sci , vol.120 , Issue.PART 6 , pp. 1104-1112
    • Matsumoto, M.1
  • 25
    • 79551543927 scopus 로고    scopus 로고
    • UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways
    • Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LH (2011) UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 124(Pt 3): 435-446.
    • (2011) J Cell Sci , vol.124 , Issue.PART 3 , pp. 435-446
    • Vrouwe, M.G.1    Pines, A.2    Overmeer, R.M.3    Hanada, K.4    Mullenders, L.H.5
  • 26
    • 38049178545 scopus 로고    scopus 로고
    • Transcription-coupled nucleotide excision repair in mammalian cells: Molecular mechanisms and biological effects
    • Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: Molecular mechanisms and biological effects. Cell Res 18(1):73-84.
    • (2008) Cell Res , vol.18 , Issue.1 , pp. 73-84
    • Fousteri, M.1    Mullenders, L.H.2
  • 27
    • 84869095110 scopus 로고    scopus 로고
    • Cyclin-dependent kinase control of the initiation-Toelongation switch of RNA polymerase II
    • Larochelle, S., et al. (2012) Cyclin-dependent kinase control of the initiation-Toelongation switch of RNA polymerase II. Nat Struct Mol Biol 19(11):1108-1115.
    • (2012) Nat Struct Mol Biol , vol.19 , Issue.11 , pp. 1108-1115
    • Larochelle, S.1
  • 28
    • 72949099700 scopus 로고    scopus 로고
    • Misguided transcriptional elongation causes mixed lineage leukemia
    • Mueller D, et al. (2009) Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 7(11):e1000249.
    • (2009) PLoS Biol , vol.7 , Issue.11
    • Mueller, D.1
  • 29
    • 33846522525 scopus 로고    scopus 로고
    • The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling
    • Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16(1):92-106.
    • (2007) Hum Mol Genet , vol.16 , Issue.1 , pp. 92-106
    • Bitoun, E.1    Oliver, P.L.2    Davies, K.E.3
  • 30
    • 79954552505 scopus 로고    scopus 로고
    • The super elongation complex (SEC) and MLL in development and disease
    • Smith E, Lin C, Shilatifard A (2011) The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25(7):661-672.
    • (2011) Genes Dev , vol.25 , Issue.7 , pp. 661-672
    • Smith, E.1    Lin, C.2    Shilatifard, A.3
  • 31
    • 77953322989 scopus 로고    scopus 로고
    • Influence of the live cell DNA marker DRAQ5 on chromatinassociated processes
    • Mari PO, et al. (2010) Influence of the live cell DNA marker DRAQ5 on chromatinassociated processes. DNA Repair (Amst) 9(7):848-855.
    • (2010) DNA Repair (Amst) , vol.9 , Issue.7 , pp. 848-855
    • Mari, P.O.1
  • 32
    • 77649225150 scopus 로고    scopus 로고
    • Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells
    • Fattah F, et al. (2010) Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet 6(2):e1000855.
    • (2010) PLoS Genet , vol.6 , Issue.2
    • Fattah, F.1
  • 33
    • 78049414233 scopus 로고    scopus 로고
    • Transcription factor IIS impacts UV-inhibited transcription
    • Jensen A, Mullenders LH (2010) Transcription factor IIS impacts UV-inhibited transcription. DNA Repair (Amst) 9(11):1142-1150.
    • (2010) DNA Repair (Amst) , vol.9 , Issue.11 , pp. 1142-1150
    • Jensen, A.1    Mullenders, L.H.2
  • 34
    • 0035204187 scopus 로고    scopus 로고
    • Local UV-induced DNA damage in cell nuclei results in local transcription inhibition
    • Moné MJ, et al. (2001) Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep 2(11):1013-1017.
    • (2001) EMBO Rep , vol.2 , Issue.11 , pp. 1013-1017
    • Moné, M.J.1
  • 35
    • 0031080378 scopus 로고    scopus 로고
    • Analysis of chromatin structure by in vivo formaldehyde cross-linking
    • Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11(2):205-214.
    • (1997) Methods , vol.11 , Issue.2 , pp. 205-214
    • Orlando, V.1    Strutt, H.2    Paro, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.