메뉴 건너뛰기




Volumn 9, Issue 3, 2015, Pages 1103-1140

Slope—adaptive variable selection via convex optimization

Author keywords

False discovery rate; Lasso; Sorted 1 penalized estimation (SLOPE); Sparse regression; Variable selection

Indexed keywords


EID: 84946556176     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/15-AOAS842     Document Type: Article
Times cited : (315)

References (55)
  • 1
    • 0001835983 scopus 로고
    • Thresholding of wavelet coefficients as multiple hypotheses testing procedure
    • Wavelets and Statistics. Springer, Berlin
    • ABRAMOVICH, F. and BENJAMINI, Y. (1995). Thresholding of wavelet coefficients as multiple hypotheses testing procedure. In Wavelets and Statistics. Lecture Notes in Statistics 103 5-14. Springer, Berlin.
    • (1995) Lecture Notes in Statistics , vol.103 , pp. 5-14
    • Abramovich, F.1    Benjamini, Y.2
  • 2
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • MR2281879
    • ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. L. and JOHNSTONE, I. M. (2006). Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34 584-653. MR2281879
    • (2006) Ann. Statist , vol.34 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.L.3    Johnstone, I.M.4
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • System identification and time-series analysis. MR0423716
    • AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19 716-723. System identification and time-series analysis. MR0423716
    • (1974) IEEE Trans. Automat. Control AC , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 0002526114 scopus 로고
    • Model selection by multiple test procedures
    • MR0921623
    • BAUER, P., PÖTSCHER, B. M. and HACKL, P. (1988). Model selection by multiple test procedures. Statistics 19 39-44. MR0921623
    • (1988) Statistics , vol.19 , pp. 39-44
    • Bauer, P.1    Pötscher, B.M.2    Hackl, P.3
  • 6
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • MR2486527
    • BECK, A. and TEBOULLE, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 183-202. MR2486527
    • (2009) SIAM J. Imaging Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 7
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • MR2833262
    • BECKER, S. R., CANDÈS, E. J. and GRANT, M. C. (2011). Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3 165-218. MR2833262
    • (2011) Math. Program. Comput , vol.3 , pp. 165-218
    • Becker, S.R.1    Candès, E.J.2    Grant, M.C.3
  • 8
    • 78650339300 scopus 로고    scopus 로고
    • A simple forward selection procedure based on false discovery rate control
    • MR2668704
    • BENJAMINI, Y. and GAVRILOV, Y. (2009). A simple forward selection procedure based on false discovery rate control. Ann. Appl. Stat. 3 179-198. MR2668704
    • (2009) Ann. Appl. Stat , vol.3 , pp. 179-198
    • Benjamini, Y.1    Gavrilov, Y.2
  • 9
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • MR1325392
    • BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300. MR1325392
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 10
    • 14944365889 scopus 로고    scopus 로고
    • False discovery rate-adjusted multiple confidence intervals for selected parameters
    • MR2156820
    • BENJAMINI, Y. and YEKUTIELI, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected parameters. J. Amer. Statist. Assoc. 100 71-93. MR2156820
    • (2005) J. Amer. Statist. Assoc , vol.100 , pp. 71-93
    • Benjamini, Y.1    Yekutieli, D.2
  • 11
    • 84879164483 scopus 로고    scopus 로고
    • Valid post-selection inference
    • MR3099122
    • BERK, R., BROWN, L., BUJA, A., ZHANG, K. and ZHAO, L. (2013). Valid post-selection inference. Ann. Statist. 41 802-837. MR3099122
    • (2013) Ann. Statist , vol.41 , pp. 802-837
    • Berk, R.1    Brown, L.2    Buja, A.3    Zhang, K.4    Zhao, L.5
  • 12
    • 34249957970 scopus 로고
    • Active set algorithms for isotonic regression; a unifying framework
    • MR1068274
    • BEST, M. J. and CHAKRAVARTI, N. (1990). Active set algorithms for isotonic regression; a unifying framework. Math. Program. 47 425-439. MR1068274
    • (1990) Math. Program , vol.47 , pp. 425-439
    • Best, M.J.1    Chakravarti, N.2
  • 13
  • 14
    • 84857648827 scopus 로고    scopus 로고
    • Asymptotic Bayesoptimality under sparsity of some multiple testing procedures
    • MR2850212
    • BOGDAN, M., CHAKRABARTI, A., FROMMLET, F. and GHOSH, J. K. (2011). Asymptotic Bayesoptimality under sparsity of some multiple testing procedures. Ann. Statist. 39 1551-1579. MR2850212
    • (2011) Ann. Statist , vol.39 , pp. 1551-1579
    • Bogdan, M.1    Chakrabarti, A.2    Frommlet, F.3    Ghosh, J.K.4
  • 15
    • 54949098146 scopus 로고    scopus 로고
    • Selecting explanatory variables with the modified version of Bayesian information criterion
    • BOGDAN, M., GHOSH, J. K. and ŻAK-SZATKOWSKA, M. (2008). Selecting explanatory variables with the modified version of Bayesian information criterion. Qual. Reliab. Eng. Int. 24 627-641.
    • (2008) Qual. Reliab. Eng. Int. , vol.24 , pp. 627-641
    • Bogdan, M.1    Ghosh, J.K.2    Żak-Szatkowska, M.3
  • 18
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • MR2422825
    • BONDELL, H. D. and REICH, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 64 115-123, 322-323. MR2422825
    • (2008) Biometrics , vol.64 , Issue.115-123 , pp. 322-323
    • Bondell, H.D.1    Reich, B.J.2
  • 19
    • 84885049881 scopus 로고    scopus 로고
    • Statistical significance in high-dimensional linear models
    • MR3102549
    • BÜHLMANN, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli 19 1212-1242. MR3102549
    • (2013) Bernoulli , vol.19 , pp. 1212-1242
    • Bühlmann, P.1
  • 20
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann. Statist , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 21
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted l1 minimization
    • MR2461611
    • CANDÈS, E. J., WAKIN, M. B. and BOYD, S. P. (2008). Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14 877-905. MR2461611
    • (2008) J. Fourier Anal. Appl , vol.14 , pp. 877-905
    • Candès, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 22
    • 70450171127 scopus 로고    scopus 로고
    • Isotone optimization in R: Pool-adjacent-violators algorithm (PAVA) and active set methods
    • DE LEEUW, J.,HORNIK, K. andMAIR, P. (2009). Isotone optimization in R: Pool-adjacent-violators algorithm (PAVA) and active set methods. J. Stat. Softw. 32 1-24.
    • (2009) J. Stat. Softw. , vol.32 , pp. 1-24
    • De Leeuw, J.1    Hornik, K.2    Mair, P.3
  • 23
    • 84856005992 scopus 로고    scopus 로고
    • Tweedie's formula and selection bias
    • MR2896860
    • EFRON, B. (2011). Tweedie's formula and selection bias. J. Amer. Statist. Assoc. 106 1602-1614. MR2896860
    • (2011) J. Amer. Statist. Assoc , vol.106 , pp. 1602-1614
    • Efron, B.1
  • 24
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • MR1329177
    • FOSTER, D. P. and GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975. MR1329177
    • (1994) Ann. Statist , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 25
    • 0032680981 scopus 로고    scopus 로고
    • Local asymptotic coding and the minimum description length
    • MR1686271
    • FOSTER, D. P. and STINE, R. A. (1999). Local asymptotic coding and the minimum description length. IEEE Trans. Inform. Theory 45 1289-1293. MR1686271
    • (1999) IEEE Trans. Inform. Theory , vol.45 , pp. 1289-1293
    • Foster, D.P.1    Stine, R.A.2
  • 26
    • 85052356932 scopus 로고    scopus 로고
    • Controlling the false discovery rate via knockoffs
    • FOYGEL-BARBER, R. andCANDÈS, E. J. (2014). Controlling the false discovery rate via knockoffs. Ann. Statist. To appear. Available at arXiv:1404.5609.
    • (2014) Ann. Statist. To appear.
    • Foygel-Barber, R.1    Candès, E.J.2
  • 27
    • 84884955624 scopus 로고    scopus 로고
    • Some optimality properties of FDR controlling rules under sparsity
    • MR3063610
    • FROMMLET, F. andBOGDAN, M. (2013). Some optimality properties of FDR controlling rules under sparsity. Electron. J. Stat. 7 1328-1368. MR3063610
    • (2013) Electron. J. Stat , vol.7 , pp. 1328-1368
    • Frommlet, F.1    Bogdan, M.2
  • 28
    • 79959746046 scopus 로고    scopus 로고
    • Modified versions of Bayesian information criterion for genome-wide association studies
    • MR2897552
    • FROMMLET, F., RUHALTINGER, F., TWARÓG, P. and BOGDAN, M. (2012). Modified versions of Bayesian information criterion for genome-wide association studies. Comput. Statist. Data Anal. 56 1038-1051. MR2897552
    • (2012) Comput. Statist. Data Anal , vol.56 , pp. 1038-1051
    • Frommlet, F.1    Ruhaltinger, F.2    Twaróg, P.3    Bogdan, M.4
  • 29
    • 84946589384 scopus 로고    scopus 로고
    • False variable selection rates in regression
    • GRAZIER G'SELL, M., HASTIE, T. and TIBSHIRANI, R. (2013). False variable selection rates in regression. Preprint. Available at arXiv:1302.2303.
    • (2013) Preprint
    • Grazier G'sell, M.1    Hastie, T.2    Tibshirani, R.3
  • 30
    • 0011598478 scopus 로고
    • Projections onto order simplexes
    • MR0768632
    • GROTZINGER, S. J. andWITZGALL, C. (1984). Projections onto order simplexes. Appl. Math. Optim. 12 247-270. MR0768632
    • (1984) Appl. Math. Optim , vol.12 , pp. 247-270
    • Grotzinger, S.J.1    Witzgall, C.2
  • 31
    • 23744506754 scopus 로고    scopus 로고
    • Minimax detection of a signal for ln-balls
    • MR1680087
    • INGSTER, YU. I. (1998). Minimax detection of a signal for ln-balls. Math. Methods Statist. 7 401- 428. MR1680087
    • (1998) Math. Methods Statist , vol.7 , pp. 401-428
    • Ingster Yu, I.1
  • 32
    • 84919709419 scopus 로고    scopus 로고
    • Confidence intervals and hypothesis testing for high-dimensional regression
    • MR3277152
    • JAVANMARD, A. and MONTANARI, A. (2014a). Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15 2869-2909. MR3277152
    • (2014) J. Mach. Learn. Res , vol.15 , pp. 2869-2909
    • Javanmard, A.1    Montanari, A.2
  • 33
    • 84907212736 scopus 로고    scopus 로고
    • Hypothesis testing in high-dimensional regression under the Gaussian random design model: Asymptotic theory
    • MR3265038
    • JAVANMARD, A. andMONTANARI, A. (2014b). Hypothesis testing in high-dimensional regression under the Gaussian random design model: Asymptotic theory. IEEE Trans. Inform. Theory 60 6522-6554. MR3265038
    • (2014) IEEE Trans. Inform. Theory , vol.60 , pp. 6522-6554
    • Javanmard, A.1    Montanari, A.2
  • 34
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • MR0169713
    • KRUSKAL, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika 29 115-129. MR0169713
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Kruskal, J.B.1
  • 36
    • 84915425007 scopus 로고
    • Some comments on cp
    • MALLOWS, C. L. (1973). Some comments on cp. Technometrics 15 661-676.
    • (1973) Technometrics , vol.15 , pp. 661-676
    • Mallows, C.L.1
  • 39
  • 40
    • 77954796034 scopus 로고    scopus 로고
    • Introductory Lectures on Convex Optimization
    • Kluwer Academic, Boston, MA. MR2142598
    • NESTEROV, Y. (2004). Introductory Lectures on Convex Optimization. A Basic Course. Kluwer Academic, Boston, MA. MR2142598
    • (2004) A Basic Course.
    • Nesterov, Y.1
  • 41
    • 67651063011 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Center for Operations Research and Econometrics (CORE), Université Catholique de Louvain
    • NESTEROV, Y. (2007). Gradient methods for minimizing composite objective function. CORE discussion paper. Center for Operations Research and Econometrics (CORE), Université Catholique de Louvain. Available at http://www.ecore.be/DPs/dp_1191313936.pdf.
    • (2007) CORE discussion paper.
    • Nesterov, Y.1
  • 42
    • 84884129062 scopus 로고    scopus 로고
    • Foundations and Trends in Optimization
    • PARIKH, N. and BOYD, S. (2013). Proximal algorithms. In Foundations and Trends in Optimization 1 123-231.
    • (2013) Proximal algorithms. , vol.1 , pp. 123-231
    • Parikh, N.1    Boyd, S.2
  • 43
    • 0036101887 scopus 로고    scopus 로고
    • Some results on false discovery rate in stepwise multiple testing procedures
    • MR1892663
    • SARKAR, S. K. (2002). Some results on false discovery rate in stepwise multiple testing procedures. Ann. Statist. 30 239-257. MR1892663
    • (2002) Ann. Statist , vol.30 , pp. 239-257
    • Sarkar, S.K.1
  • 46
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • MR2999166
    • SUN, T. and ZHANG, C.-H. (2012). Scaled sparse linear regression. Biometrika 99 879-898. MR2999166
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 47
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 48
    • 0039724913 scopus 로고    scopus 로고
    • The covariance inflation criterion for adaptive model selection
    • MR1707859
    • TIBSHIRANI, R. and KNIGHT, K. (1999). The covariance inflation criterion for adaptive model selection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 529-546. MR1707859
    • (1999) J. R. Stat. Soc. Ser. B. Stat. Methodol , vol.61 , pp. 529-546
    • Tibshirani, R.1    Knight, K.2
  • 49
    • 84988001472 scopus 로고    scopus 로고
    • On asymptotically optimal confidence regions and tests for high-dimensional models
    • MR3224285
    • VAN DE GEER, S., BÜHLMANN, P., RITOV, Y. and DEZEURE, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Statist. 42 1166-1202. MR3224285
    • (2014) Ann. Statist , vol.42 , pp. 1166-1202
    • Van De Geer, S.1    Bühlmann, P.2    Ritov, Y.3    Dezeure, R.4
  • 50
    • 69049091975 scopus 로고    scopus 로고
    • High-dimensional variable selection
    • MR2543689
    • WASSERMAN, L. and ROEDER, K. (2009). High-dimensional variable selection. Ann. Statist. 37 2178-2201. MR2543689
    • (2009) Ann. Statist , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 51
    • 84878037001 scopus 로고    scopus 로고
    • Model selection and sharp asymptotic minimaxity
    • MR3055256
    • WU, Z. and ZHOU, H. H. (2013).Model selection and sharp asymptotic minimaxity. Probab. Theory Related Fields 156 165-191. MR3055256
    • (2013) Probab. Theory Related Fields , vol.156 , pp. 165-191
    • Wu, Z.1    Zhou, H.H.2
  • 52
    • 84903649808 scopus 로고    scopus 로고
    • Decreasing weighted sorted l1 regularization
    • ZENG, X. and FIGUEIREDO, M. (2014). Decreasing weighted sorted l1 regularization. IEEE Signal Process. Lett. 1240-1244.
    • (2014) IEEE Signal Process. Lett , pp. 1240-1244
    • Zeng, X.1    Figueiredo, M.2
  • 53
    • 84891835103 scopus 로고    scopus 로고
    • Confidence intervals for low dimensional parameters in high dimensional linear models
    • MR3153940
    • ZHANG, C.-H. and ZHANG, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 217-242. MR3153940
    • (2014) J. R. Stat. Soc. Ser. B. Stat. Methodol , vol.76 , pp. 217-242
    • Zhang, C.-H.1    Zhang, S.S.2
  • 54
    • 84876117777 scopus 로고    scopus 로고
    • Efficient sparse modeling with automatic feature grouping
    • ZHONG, L. and KWOK, J. (2012). Efficient sparse modeling with automatic feature grouping. IEEE Trans. Neural Netw. Learn. Syst. 1436-1447.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , pp. 1436-1447
    • Zhong, L.1    Kwok, J.2
  • 55
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.