메뉴 건너뛰기




Volumn 9, Issue 1, 2015, Pages

Robust and efficient parameter estimation in dynamic models of biological systems

Author keywords

Dynamic models; Global optimization; Overfitting; Parameter estimation; Regularization

Indexed keywords

ALGORITHM; BIOLOGICAL MODEL; METABOLISM; NONLINEAR SYSTEM; PROCEDURES; SIGNAL TRANSDUCTION; SYSTEMS BIOLOGY;

EID: 84945919257     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/s12918-015-0219-2     Document Type: Article
Times cited : (121)

References (130)
  • 1
    • 33747830489 scopus 로고    scopus 로고
    • Quantitative modeling in cell biology: what is it good for?
    • Mogilner A, Wollman R, Marshall WF. Quantitative modeling in cell biology: what is it good for? Dev Cell. 2006;11(3):279-87.
    • (2006) Dev Cell. , vol.11 , Issue.3 , pp. 279-287
    • Mogilner, A.1    Wollman, R.2    Marshall, W.F.3
  • 4
    • 77950651089 scopus 로고    scopus 로고
    • The edges of understanding
    • Lander AD. The edges of understanding. BMC Biol. 2010;8(1):40.
    • (2010) BMC Biol. , vol.8 , Issue.1 , pp. 40
    • Lander, A.D.1
  • 5
    • 0035464637 scopus 로고    scopus 로고
    • Systems biology: the reincarnation of systems theory applied in biology?
    • Wolkenhauer O. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform. 2001;2(3):258-70.
    • (2001) Brief Bioinform. , vol.2 , Issue.3 , pp. 258-270
    • Wolkenhauer, O.1
  • 6
    • 4644268555 scopus 로고    scopus 로고
    • Mathematical models in microbial systems biology
    • Stelling J. Mathematical models in microbial systems biology. Curr Opin Microbiol. 2004;7(5):513-8.
    • (2004) Curr Opin Microbiol. , vol.7 , Issue.5 , pp. 513-518
    • Stelling, J.1
  • 7
    • 33644807093 scopus 로고    scopus 로고
    • Feedback dynamics and cell function: why systems biology is called systems biology
    • Wolkenhauer O, MesarovícM. Feedback dynamics and cell function: why systems biology is called systems biology. Mol BioSyst. 2005;1(1):14-6.
    • (2005) Mol BioSyst. , vol.1 , Issue.1 , pp. 14-16
    • Wolkenhauer, O.1    Mesarovíc, M.2
  • 8
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9(1):67-103.
    • (2002) J Comput Biol. , vol.9 , Issue.1 , pp. 67-103
    • De Jong, H.1
  • 9
    • 0037376655 scopus 로고    scopus 로고
    • Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell
    • Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Oinion Cell Biol. 2003;15(2):221-31.
    • (2003) Curr Oinion Cell Biol. , vol.15 , Issue.2 , pp. 221-231
    • Tyson, J.J.1    Chen, K.C.2    Novak, B.3
  • 10
    • 33644524741 scopus 로고    scopus 로고
    • Cell-signalling dynamics in time and space
    • Kholodenko BN. Cell-signalling dynamics in time and space. Mol Cell Biol. 2006;7(3):165-76.
    • (2006) Mol Cell Biol. , vol.7 , Issue.3 , pp. 165-176
    • Kholodenko, B.N.1
  • 12
  • 13
    • 79551552677 scopus 로고    scopus 로고
    • Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks
    • Schaber J, Klipp E. Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. Curr Opin Biotechnol. 2011;22:109-16.
    • (2011) Curr Opin Biotechnol. , vol.22 , pp. 109-116
    • Schaber, J.1    Klipp, E.2
  • 14
    • 84878742739 scopus 로고    scopus 로고
    • Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism
    • Sunnå ker M, Zamora-Sillero E, Dechant R, Ludwig C, Busetto AG, Wagner A, et al. Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism. Sci Signal. 2013;6(277):41-1.
    • (2013) Sci Signal. , vol.6 , Issue.277 , pp. 41-41
    • Sunnå ker, M.1    Zamora-Sillero, E.2    Dechant, R.3    Ludwig, C.4    Busetto, A.G.5    Wagner, A.6
  • 16
    • 84923687677 scopus 로고    scopus 로고
    • Quantitative and logic modelling of molecular and gene networks
    • Le Novère N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet. 2015;16:146-58.
    • (2015) Nat Rev Genet. , vol.16 , pp. 146-158
    • Le Novère, N.1
  • 17
    • 0028011211 scopus 로고
    • Optimal experimental design for parameter estimation in unstructured growth models
    • Baltes M, Schneider R, Sturm C, Reuss M. Optimal experimental design for parameter estimation in unstructured growth models. Biotechnol Prog. 1994;10(5):480-8.
    • (1994) Biotechnol Prog. , vol.10 , Issue.5 , pp. 480-488
    • Baltes, M.1    Schneider, R.2    Sturm, C.3    Reuss, M.4
  • 19
    • 58149232578 scopus 로고    scopus 로고
    • Parameter estimation and optimal experimental design
    • Banga JR, Balsa-Canto E. Parameter estimation and optimal experimental design. Essays Biochem. 2008;45:195-210.
    • (2008) Essays Biochem. , vol.45 , pp. 195-210
    • Banga, J.R.1    Balsa-Canto, E.2
  • 20
    • 73449142148 scopus 로고    scopus 로고
    • Optimal experimental design for parameter estimation of a cell signaling model
    • Bandara S, Schlöder JP, Eils R, Bock HG, Meyer T. Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput Biol. 2009;5(11):1000558.
    • (2009) PLoS Comput Biol. , vol.5 , Issue.11
    • Bandara, S.1    Schlöder, J.P.2    Eils, R.3    Bock, H.G.4    Meyer, T.5
  • 21
    • 77952481588 scopus 로고    scopus 로고
    • Parameter identification, experimental design and model falsification for biological network models using semidefinite programming
    • Hasenauer J, Waldherr S, Wagner K, Allgower F. Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. IET Syst Biol. 2010;4(2):119-30.
    • (2010) IET Syst Biol. , vol.4 , Issue.2 , pp. 119-130
    • Hasenauer, J.1    Waldherr, S.2    Wagner, K.3    Allgower, F.4
  • 23
    • 70349782009 scopus 로고    scopus 로고
    • Computational design tools for synthetic biology
    • Marchisio MA, Stelling J. Computational design tools for synthetic biology. Curr Opin Biotechnol. 2009;20(4):479-85.
    • (2009) Curr Opin Biotechnol. , vol.20 , Issue.4 , pp. 479-485
    • Marchisio, M.A.1    Stelling, J.2
  • 28
    • 58849162806 scopus 로고    scopus 로고
    • Systems biology: model based evaluation and comparison of potential explanations for given biological data
    • Cedersund G, Roll J. Systems biology: model based evaluation and comparison of potential explanations for given biological data. FEBS J. 2009;276(4):903-22.
    • (2009) FEBS J. , vol.276 , Issue.4 , pp. 903-922
    • Cedersund, G.1    Roll, J.2
  • 32
    • 84921350710 scopus 로고    scopus 로고
    • The inverse problem in mathematical biology
    • Clermont G, Zenker S. The inverse problem in mathematical biology. Math Biosci. 2015;260:11-5.
    • (2015) Math Biosci. , vol.260 , pp. 11-15
    • Clermont, G.1    Zenker, S.2
  • 33
    • 33845410054 scopus 로고    scopus 로고
    • Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments
    • van Riel N. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinforma. 2006;7(4):364-74.
    • (2006) Brief Bioinforma. , vol.7 , Issue.4 , pp. 364-374
    • van Riel, N.1
  • 34
    • 33750374139 scopus 로고    scopus 로고
    • Linking data to models: data regression
    • Jaqaman K, Danuser G. Linking data to models: data regression. Mol Cell Biol. 2006;7(11):813-9.
    • (2006) Mol Cell Biol. , vol.7 , Issue.11 , pp. 813-819
    • Jaqaman, K.1    Danuser, G.2
  • 35
    • 65649102679 scopus 로고    scopus 로고
    • Recent developments in parameter estimation and structure identification of biochemical and genomic systems
    • Chou IC, Voit EO. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci. 2009;219(2):57-83.
    • (2009) Math Biosci. , vol.219 , Issue.2 , pp. 57-83
    • Chou, I.C.1    Voit, E.O.2
  • 36
  • 37
    • 84888062735 scopus 로고    scopus 로고
    • Parameter uncertainty in biochemical models described by ordinary differential equations
    • Vanlier J, Tiemann CA, Hilbers PAJ, van Riel NAW. Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci. 2013;246(2):305-14.
    • (2013) Math Biosci. , vol.246 , Issue.2 , pp. 305-314
    • Vanlier, J.1    Tiemann, C.A.2    Hilbers, P.A.J.3    van Riel, N.A.W.4
  • 39
    • 84891892050 scopus 로고    scopus 로고
    • Reverse engineering and identification in systems biology: strategies, perspectives and challenges
    • Villaverde AF, Banga JR. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2014;11(91):20130505.
    • (2014) J R Soc Interface. , vol.11 , Issue.91
    • Villaverde, A.F.1    Banga, J.R.2
  • 40
    • 84874020076 scopus 로고    scopus 로고
    • Advances and selected recent developments in state and parameter estimation
    • Kravaris C, Hahn J, Chu Y. Advances and selected recent developments in state and parameter estimation. Comput Chem Eng. 2013;51:111-23.
    • (2013) Comput Chem Eng. , vol.51 , pp. 111-123
    • Kravaris, C.1    Hahn, J.2    Chu, Y.3
  • 42
    • 0032406131 scopus 로고    scopus 로고
    • Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation
    • Mendes P, Kell D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics. 1998;14(10):869-83.
    • (1998) Bioinformatics. , vol.14 , Issue.10 , pp. 869-883
    • Mendes, P.1    Kell, D.2
  • 43
    • 0034102942 scopus 로고    scopus 로고
    • Global optimization for the parameter estimation of differential-algebraic systems
    • Esposito WR, Floudas CA. Global optimization for the parameter estimation of differential-algebraic systems. Ind Eng Chem Res. 2000;39: 1291-310.
    • (2000) Ind Eng Chem Res. , vol.39 , pp. 1291-1310
    • Esposito, W.R.1    Floudas, C.A.2
  • 44
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: a comparison of global optimization methods
    • Moles CG, Mendes P, Banga JR. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 2003;13:2467-474.
    • (2003) Genome Res. , vol.13 , pp. 2467-2474
    • Moles, C.G.1    Mendes, P.2    Banga, J.R.3
  • 45
    • 33646364037 scopus 로고    scopus 로고
    • Identification of metabolic system parameters using global optimization methods
    • Polisetty PK, Voit EO, Gatzke EP. Identification of metabolic system parameters using global optimization methods. Theor Biol Med Model. 2006;3(1):4.
    • (2006) Theor Biol Med Model. , vol.3 , Issue.1 , pp. 4
    • Polisetty, P.K.1    Voit, E.O.2    Gatzke, E.P.3
  • 46
    • 33846045618 scopus 로고    scopus 로고
    • Global methods for dynamic optimization and mixed-integer dynamic optimization
    • Chachuat B, Singer AB, Barton PI. Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind Eng Chem Res. 2006;45(25):8373-392.
    • (2006) Ind Eng Chem Res. , vol.45 , Issue.25 , pp. 8373-8392
    • Chachuat, B.1    Singer, A.B.2    Barton, P.I.3
  • 47
    • 77956289955 scopus 로고    scopus 로고
    • Classic and contemporary approaches to modeling biochemical reactions
    • Chen WW, Niepel M, Sorger PK. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 2010;24(17):1861-75.
    • (2010) Genes Dev. , vol.24 , Issue.17 , pp. 1861-1875
    • Chen, W.W.1    Niepel, M.2    Sorger, P.K.3
  • 48
    • 84885166438 scopus 로고    scopus 로고
    • Analyzing and constraining signaling networks: parameter estimation for the user
    • Liu X, Betterton MD, editors, Methods in molecular biology, vol. 880. New York: Humana Press;
    • Geier F, Fengos G, Felizzi F, Iber D. Analyzing and constraining signaling networks: parameter estimation for the user. In: Liu X, Betterton MD, editors. Computational modeling of signaling networks. Methods in molecular biology, vol. 880. New York: Humana Press; 2012. p. 23-40.
    • (2012) Computational modeling of signaling networks , pp. 23-40
    • Geier, F.1    Fengos, G.2    Felizzi, F.3    Iber, D.4
  • 51
    • 41549094989 scopus 로고    scopus 로고
    • Constraint-based modeling and kinetic analysis of the Smad dependent TGF-β signaling pathway
    • Zi Z, Klipp E. Constraint-based modeling and kinetic analysis of the Smad dependent TGF-β signaling pathway. PLoS ONE. 2007;2(9):936.
    • (2007) PLoS ONE. , vol.2 , Issue.9 , pp. 936
    • Zi, Z.1    Klipp, E.2
  • 52
    • 0035684378 scopus 로고    scopus 로고
    • A model for measurement error for gene expression arrays
    • Rocke DM, Durbin B. A model for measurement error for gene expression arrays. J Comput Biol. 2001;8(6):557-69.
    • (2001) J Comput Biol. , vol.8 , Issue.6 , pp. 557-569
    • Rocke, D.M.1    Durbin, B.2
  • 54
    • 31144436446 scopus 로고    scopus 로고
    • Quantitative data generation for systems biology: the impact of randomisation, calibrators and normalisers
    • Stevenage, United Kingdom: IET
    • Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, et al. Quantitative data generation for systems biology: the impact of randomisation, calibrators and normalisers. In: IEE Proc-Syst Biol, vol.152. Stevenage, United Kingdom: IET; 2005. p. 193-200.
    • (2005) IEE Proc-Syst Biol , vol.152 , pp. 193-200
    • Schilling, M.1    Maiwald, T.2    Bohl, S.3    Kollmann, M.4    Kreutz, C.5    Timmer, J.6
  • 55
    • 11244346557 scopus 로고    scopus 로고
    • Variance stabilization applied to microarray data calibration and to the quantification of differential expression
    • Huber W, Von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(suppl 1): 96-104.
    • (2002) Bioinformatics. , vol.18 , pp. 96-104
    • Huber, W.1    Von Heydebreck, A.2    Sültmann, H.3    Poustka, A.4    Vingron, M.5
  • 56
    • 0012572299 scopus 로고    scopus 로고
    • A variance-stabilizing transformation for gene-expression microarray data
    • Durbin BP, Hardin JS, Hawkins DM, Rocke DM. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics. 2002;18(suppl 1):105-10.
    • (2002) Bioinformatics. , vol.18 , pp. 105-110
    • Durbin, B.P.1    Hardin, J.S.2    Hawkins, D.M.3    Rocke, D.M.4
  • 59
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics. 2009;25(15):1923-9.
    • (2009) Bioinformatics. , vol.25 , Issue.15 , pp. 1923-1929
    • Raue, A.1    Kreutz, C.2    Maiwald, T.3    Bachmann, J.4    Schilling, M.5    Klingmüller, U.6
  • 60
    • 77949475400 scopus 로고    scopus 로고
    • An iterative identification procedure for dynamicmodeling of biochemical networks
    • Balsa-Canto E, Alonso AA, Banga JR. An iterative identification procedure for dynamicmodeling of biochemical networks. BMC Syst Biol. 2010;4:11.
    • (2010) BMC Syst Biol. , vol.4 , pp. 11
    • Balsa-Canto, E.1    Alonso, A.A.2    Banga, J.R.3
  • 61
    • 33748057502 scopus 로고    scopus 로고
    • Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems
    • Joshi M, Seidel-Morgenstern A, Kremling A. Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. Metab Eng. 2006;8(5):447-55.
    • (2006) Metab Eng. , vol.8 , Issue.5 , pp. 447-455
    • Joshi, M.1    Seidel-Morgenstern, A.2    Kremling, A.3
  • 63
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44(1):1-12.
    • (2004) J Chem Inf Comput Sci. , vol.44 , Issue.1 , pp. 1-12
    • Hawkins, D.M.1
  • 64
    • 0001484947 scopus 로고
    • Optimization and sensitivity analysis for multiresponse parameter estimation in systems of ordinary differential equations
    • Guay M, McLean DD. Optimization and sensitivity analysis for multiresponse parameter estimation in systems of ordinary differential equations. Comput Chem Eng. 1995;19(12):1271-85.
    • (1995) Comput Chem Eng. , vol.19 , Issue.12 , pp. 1271-1285
    • Guay, M.1    McLean, D.D.2
  • 65
    • 0033522751 scopus 로고    scopus 로고
    • Second-order sensitivities of general dynamic systems with application to optimal control problems
    • Vassiliadis VS, Canto EB, Banga JR. Second-order sensitivities of general dynamic systems with application to optimal control problems. Chem Eng Sci. 1999;54(17):3851-860.
    • (1999) Chem Eng Sci. , vol.54 , Issue.17 , pp. 3851-3860
    • Vassiliadis, V.S.1    Canto, E.B.2    Banga, J.R.3
  • 66
    • 0033895382 scopus 로고    scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 2000;42(1):55-61.
    • (2000) Technometrics. , vol.42 , Issue.1 , pp. 55-61
    • McKay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 67
    • 33751423943 scopus 로고    scopus 로고
    • Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
    • Rodriguez-Fernandez M, Egea JA, Banga JR. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinforma. 2006;7:483.
    • (2006) BMC Bioinforma. , vol.7 , pp. 483
    • Rodriguez-Fernandez, M.1    Egea, J.A.2    Banga, J.R.3
  • 69
    • 0742269661 scopus 로고    scopus 로고
    • Global optimization of dynamic systems
    • Papamichail I, Adjiman CS. Global optimization of dynamic systems. Comput Chem Eng. 2004;28:403-15.
    • (2004) Comput Chem Eng. , vol.28 , pp. 403-415
    • Papamichail, I.1    Adjiman, C.S.2
  • 70
    • 33644509534 scopus 로고    scopus 로고
    • Global dynamic optimization for parameter estimation in chemical kinetics
    • Singer AB, Taylor JW, Barton PI, Green Jr WH. Global dynamic optimization for parameter estimation in chemical kinetics. J Phys Chem. 2006;110(3):971-6.
    • (2006) J Phys Chem. , vol.110 , Issue.3 , pp. 971-976
    • Singer, A.B.1    Taylor, J.W.2    Barton, P.I.3    Green, W.H.4
  • 71
    • 84860666182 scopus 로고    scopus 로고
    • Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems
    • Miró A, Pozo C, Guillén-Gosálbez G, Egea JA, Jiménez L. Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinforma. 2012;13(1):90.
    • (2012) BMC Bioinforma. , vol.13 , Issue.1 , pp. 90
    • Miró, A.1    Pozo, C.2    Guillén-Gosálbez, G.3    Egea, J.A.4    Jiménez, L.5
  • 72
    • 32044474451 scopus 로고    scopus 로고
    • A hybrid approach for efficient and robust parameter estimation in biochemical pathways
    • Rodriguez-Fernandez M, Mendes P, Banga JR. A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Bio Syst. 2006;83(2-3):248-65.
    • (2006) Bio Syst. , vol.83 , Issue.2-3 , pp. 248-265
    • Rodriguez-Fernandez, M.1    Mendes, P.2    Banga, J.R.3
  • 73
    • 81455142792 scopus 로고    scopus 로고
    • Parameter estimation using metaheuristics in systems biology: a comprehensive review
    • Sun J, Garibaldi JM, Hodgman C. Parameter estimation using metaheuristics in systems biology: a comprehensive review. Comput Biol Bioinforma, IEEE/ACM Trans on. 2012;9(1):185-202.
    • (2012) Comput Biol Bioinforma, IEEE/ACM Trans on. , vol.9 , Issue.1 , pp. 185-202
    • Sun, J.1    Garibaldi, J.M.2    Hodgman, C.3
  • 74
    • 41849104688 scopus 로고    scopus 로고
    • Hybrid optimization method with general switching strategy for parameter estimation
    • Balsa-Canto E, Peifer M, Banga JR, Timmer J, Fleck C. Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst Biol. 2008;2(1):26.
    • (2008) BMC Syst Biol. , vol.2 , Issue.1 , pp. 26
    • Balsa-Canto, E.1    Peifer, M.2    Banga, J.R.3    Timmer, J.4    Fleck, C.5
  • 75
    • 69549124230 scopus 로고    scopus 로고
    • An evolutionary method for complex-process optimization
    • Egea JA, Martí R, Banga JR. An evolutionary method for complex-process optimization. Comput Oper Res. 2010;37(2):315-24.
    • (2010) Comput Oper Res. , vol.37 , Issue.2 , pp. 315-324
    • Egea, J.A.1    Martí, R.2    Banga, J.R.3
  • 76
    • 84869217594 scopus 로고    scopus 로고
    • Incremental parameter estimation of kinetic metabolic network models
    • Jia G, Stephanopoulos G, Gunawan R. Incremental parameter estimation of kinetic metabolic network models. BMC Syst Biol. 2012;6:142.
    • (2012) BMC Syst Biol. , vol.6 , pp. 142
    • Jia, G.1    Stephanopoulos, G.2    Gunawan, R.3
  • 77
    • 84954310875 scopus 로고    scopus 로고
    • Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study
    • Fan M, Kuwahara H, Wang X, Wang S, Gao X. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study. Brief Bioinforma. 2015;015:.
    • (2015) Brief Bioinforma. , vol.15
    • Fan, M.1    Kuwahara, H.2    Wang, X.3    Wang, S.4    Gao, X.5
  • 81
    • 0002541945 scopus 로고
    • Ockham's razor and Bayesian analysis
    • Jefferys WH, Berger JO. Ockham's razor and Bayesian analysis. Am Sci. 1992;80(1):64-72.
    • (1992) Am Sci. , vol.80 , Issue.1 , pp. 64-72
    • Jefferys, W.H.1    Berger, J.O.2
  • 82
    • 0040675320 scopus 로고    scopus 로고
    • On different facets of regularization theory
    • Chen Z, Haykin S. On different facets of regularization theory. Neural Comput. 2002;2846(12):2791-846.
    • (2002) Neural Comput. , vol.2846 , Issue.12 , pp. 2791-2846
    • Chen, Z.1    Haykin, S.2
  • 83
    • 80051748187 scopus 로고    scopus 로고
    • Dynamic causal modelling: a critical review of the biophysical and statistical foundations
    • Daunizeau J, David O, Stephan K. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. NeuroImage. 2011;58(2):312-22.
    • (2011) NeuroImage. , vol.58 , Issue.2 , pp. 312-322
    • Daunizeau, J.1    David, O.2    Stephan, K.3
  • 85
    • 79955564733 scopus 로고    scopus 로고
    • Comparing parameter choice methods for regularization of ill-posed problems
    • Bauer F, Lukas MA. Comparing parameter choice methods for regularization of ill-posed problems. Math Comput Simul. 2011;81(9): 1795-841.
    • (2011) Math Comput Simul. , vol.81 , Issue.9 , pp. 1795-1841
    • Bauer, F.1    Lukas, M.A.2
  • 89
    • 84868696134 scopus 로고    scopus 로고
    • Regularization of inverse problems to determine transcription factor profiles from fluorescent reporter systems
    • Bansal L, Chu Y, Laird C, Hahn J. Regularization of inverse problems to determine transcription factor profiles from fluorescent reporter systems. AIChE J. 2012;58(12):3751-762.
    • (2012) AIChE J. , vol.58 , Issue.12 , pp. 3751-3762
    • Bansal, L.1    Chu, Y.2    Laird, C.3    Hahn, J.4
  • 90
    • 84892877494 scopus 로고    scopus 로고
    • Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm
    • Wang H, Wang XC. Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm. J Theor Biol. 2014;343:199-207.
    • (2014) J Theor Biol. , vol.343 , pp. 199-207
    • Wang, H.1    Wang, X.C.2
  • 91
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc: Series B. 1996;58(1):267-88.
    • (1996) J R Stat Soc: Series B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 92
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc: Series B. 2005;67(2):301-20.
    • (2005) J R Stat Soc: Series B. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 93
    • 36149035969 scopus 로고
    • Maximum entropy regularization of Fredholm integral equations of the first kind
    • Amato U, Hughes W. Maximum entropy regularization of Fredholm integral equations of the first kind. Inverse Probl. 1991;7:793-808.
    • (1991) Inverse Probl. , vol.7 , pp. 793-808
    • Amato, U.1    Hughes, W.2
  • 94
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • Picard RR, Cook RD. Cross-validation of regression models. J Am Stat Assoc. 1984;79(387):575-83.
    • (1984) J Am Stat Assoc. , vol.79 , Issue.387 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 95
    • 84952126648 scopus 로고
    • Validation of regression models: methods and examples
    • Snee RD. Validation of regression models: methods and examples. Technometrics. 1977;19(4):415-28.
    • (1977) Technometrics. , vol.19 , Issue.4 , pp. 415-428
    • Snee, R.D.1
  • 96
    • 0031084233 scopus 로고    scopus 로고
    • On Tikhonov Reguhrization, bias and variance in nonlinear system identification
    • Johansent TA. On Tikhonov Reguhrization, bias and variance in nonlinear system identification. Automatica. 1997;33(3):441-6.
    • (1997) Automatica. , vol.33 , Issue.3 , pp. 441-446
    • Johansent, T.A.1
  • 97
    • 0027152751 scopus 로고
    • Overtraining, regularization, and searching for minimum in neural networks
    • Dugard L, Msaad M, Landau ID, editors, Grenoble: Pergamon Press, Oxford;
    • Sjöberg J, Ljung L. Overtraining, regularization, and searching for minimum in neural networks In: Dugard L, Msaad M, Landau ID, editors. IFAC Symposia series, adaptive systems in control and signal processing. Grenoble: Pergamon Press, Oxford; 1992. p. 73-8.
    • (1992) IFAC Symposia series, adaptive systems in control and signal processing , pp. 73-78
    • Sjöberg, J.1    Ljung, L.2
  • 98
    • 0016333007 scopus 로고
    • Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations
    • Gupta NK, Mehra RK. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations. IEEE Trans Autom Control. 1974;19(6):774-83.
    • (1974) IEEE Trans Autom Control. , vol.19 , Issue.6 , pp. 774-783
    • Gupta, N.K.1    Mehra, R.K.2
  • 99
    • 0000481011 scopus 로고
    • Sensitivity analysis of complex kinetic systems. Tools and applications
    • Turányi T. Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem. 1990;5(3):203-48.
    • (1990) J Math Chem. , vol.5 , Issue.3 , pp. 203-248
    • Turányi, T.1
  • 100
    • 0028441801 scopus 로고
    • Identifiability and distinguishability of general reaction systems
    • Vajda S, Rabitz H. Identifiability and distinguishability of general reaction systems. J Phys Chem. 1994;98(20):5265-271.
    • (1994) J Phys Chem. , vol.98 , Issue.20 , pp. 5265-5271
    • Vajda, S.1    Rabitz, H.2
  • 101
    • 2442606579 scopus 로고    scopus 로고
    • Selection of model parameters for off-line parameter estimation
    • Li R, Henson MA, Kurtz MJ. Selection of model parameters for off-line parameter estimation. IEEE Trans Control Syst Technol. 2004;12(3): 402-12.
    • (2004) IEEE Trans Control Syst Technol. , vol.12 , Issue.3 , pp. 402-412
    • Li, R.1    Henson, M.A.2    Kurtz, M.J.3
  • 105
    • 0000570697 scopus 로고
    • Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
    • Hansen PC. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve. SIAM Rev. 1992;34(4):561-80.
    • (1992) SIAM Rev. , vol.34 , Issue.4 , pp. 561-580
    • Hansen, P.C.1
  • 106
    • 0001632418 scopus 로고
    • The use of the L-Curve in the regularization of discrete ill-posed problems
    • Hansen PC, O'Leary DP. The use of the L-Curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput. 1993;14(6):1487-503.
    • (1993) SIAM J Sci Comput. , vol.14 , Issue.6 , pp. 1487-1503
    • Hansen, P.C.1    O'Leary, D.P.2
  • 107
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub GH, Heath MT, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics. 1979;21: 215-23.
    • (1979) Technometrics. , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.T.2    Wahba, G.3
  • 108
    • 79955568494 scopus 로고    scopus 로고
    • Robust GCV choice of the regularization parameter for correlated data
    • Lukas MA. Robust GCV choice of the regularization parameter for correlated data. J Integr Equ Appl. 2010;22(3):519-47.
    • (2010) J Integr Equ Appl. , vol.22 , Issue.3 , pp. 519-547
    • Lukas, M.A.1
  • 109
    • 44449133545 scopus 로고    scopus 로고
    • Strong robust generalized cross-validation ot choosing the regularization parameter
    • Lukas MA. Strong robust generalized cross-validation ot choosing the regularization parameter. Inverse Probl. 2008;24(3):34006-34021.
    • (2008) Inverse Probl. , vol.24 , Issue.3 , pp. 34006-34021
    • Lukas, M.A.1
  • 110
    • 85052358123 scopus 로고    scopus 로고
    • Improved parameter estimation in kinetic models: tuning of regularization methods
    • Mendes P, Dada J, Smallbone K, editors. Manchester: Springer
    • Gábor A, Banga JR. Improved parameter estimation in kinetic models: tuning of regularization methods In: Mendes P, Dada J, Smallbone K, editors. 13th Conference on computational methods in systems biology. Manchester: Springer; 2014.
    • (2014) 13th Conference on computational methods in systems biology
    • Gábor, A.1    Banga, J.R.2
  • 111
    • 84988553347 scopus 로고    scopus 로고
    • Does data splitting improve prediction?
    • Faraway JJ. Does data splitting improve prediction? Stat Comput. 2014;1-12.
    • (2014) Stat Comput , pp. 1-12
    • Faraway, J.J.1
  • 114
    • 84966214028 scopus 로고
    • An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates
    • Gfrerer H. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math Comput. 1987;49(180):507.
    • (1987) Math Comput. , vol.49 , Issue.180 , pp. 507
    • Gfrerer, H.1
  • 115
    • 33745766913 scopus 로고    scopus 로고
    • On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data
    • Hämarik U, Raus T. On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data. J Inverse Ill-posed Probl. 2006;14(3):251-66.
    • (2006) J Inverse Ill-posed Probl. , vol.14 , Issue.3 , pp. 251-266
    • Hämarik, U.1    Raus, T.2
  • 116
    • 21944442815 scopus 로고    scopus 로고
    • On the monotone error rule for parameter choice in iterative and continuous regularization methods
    • Hämarik U, Tautenhahn U. On the monotone error rule for parameter choice in iterative and continuous regularization methods. BIT. 2001;41(5):1029-38.
    • (2001) BIT. , vol.41 , Issue.5 , pp. 1029-1038
    • Hämarik, U.1    Tautenhahn, U.2
  • 117
    • 0000012624 scopus 로고
    • On a problem of adaptive estimation in Gaussian White noise
    • Lepskii O. On a problem of adaptive estimation in Gaussian White noise. Theory Probab Its Appl. 1991;35(3):454-66.
    • (1991) Theory Probab Its Appl. , vol.35 , Issue.3 , pp. 454-466
    • Lepskii, O.1
  • 118
    • 33947424437 scopus 로고    scopus 로고
    • Some considerations concerning regularization and parameter choice algorithms
    • Bauer F. Some considerations concerning regularization and parameter choice algorithms. Inverse Probl. 2007;23(2):837-58.
    • (2007) Inverse Probl. , vol.23 , Issue.2 , pp. 837-858
    • Bauer, F.1
  • 119
    • 0000169154 scopus 로고    scopus 로고
    • A regularization parameter in discrete Ill-posed problems
    • Regínska T. A regularization parameter in discrete Ill-posed problems. SIAM J Sci Comput. 1996;17(3):740-9.
    • (1996) SIAM J Sci Comput. , vol.17 , Issue.3 , pp. 740-749
    • Regínska, T.1
  • 120
    • 55349117124 scopus 로고    scopus 로고
    • Error estimates for linear systems with applications to regularization
    • Brezinski C, Rodriguez G, Seatzu S. Error estimates for linear systems with applications to regularization. Numer Algo. 2008;49:85-104.
    • (2008) Numer Algo. , vol.49 , pp. 85-104
    • Brezinski, C.1    Rodriguez, G.2    Seatzu, S.3
  • 121
    • 78649728812 scopus 로고    scopus 로고
    • Parameter choice methods using minimization schemes
    • Bauer F, Mathe P. Parameter choice methods using minimization schemes. J Complex. 2011;27:68-85.
    • (2011) J Complex. , vol.27 , pp. 68-85
    • Bauer, F.1    Mathe, P.2
  • 122
    • 0000544453 scopus 로고
    • Practical approximate solutions to linear operator equations when the data are noisy
    • Wahba G. Practical approximate solutions to linear operator equations when the data are noisy. SIAM J Numer Anal. 1977;14(4):651-67.
    • (1977) SIAM J Numer Anal. , vol.14 , Issue.4 , pp. 651-667
    • Wahba, G.1
  • 124
    • 53349102813 scopus 로고
    • Impulses and physiological states in theoretical models of nerve membrane
    • FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J. 1961;1(6):445-66.
    • (1961) Biophys J. , vol.1 , Issue.6 , pp. 445-466
    • FitzHugh, R.1
  • 125
    • 6344238035 scopus 로고
    • An active pulse transmission line simulating nerve axon
    • Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE. 1962;50(10):2061-070.
    • (1962) Proc IRE. , vol.50 , Issue.10 , pp. 2061-2070
    • Nagumo, J.1    Arimoto, S.2    Yoshizawa, S.3
  • 126
    • 0034019315 scopus 로고    scopus 로고
    • Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades
    • Kholodenko BN. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem. 2000;267(6):1583-8.
    • (2000) Eur J Biochem. , vol.267 , Issue.6 , pp. 1583-1588
    • Kholodenko, B.N.1
  • 127
    • 0013823048 scopus 로고
    • Oscillatory behavior in enzymatic control processes
    • Goodwin BC. Oscillatory behavior in enzymatic control processes. Adv Enzym Regul. 1965;3:425-38.
    • (1965) Adv Enzym Regul. , vol.3 , pp. 425-438
    • Goodwin, B.C.1
  • 128
    • 0027231876 scopus 로고
    • Computer simulation of the phosphorylation cascade controlling bacterial Chemotaxis
    • Bray D, Bourret RB, Simont MI. Computer simulation of the phosphorylation cascade controlling bacterial Chemotaxis. Mol Biol Cell. 1993;4(May):469-82.
    • (1993) Mol Biol Cell. , vol.4 , Issue.MAY , pp. 469-482
    • Bray, D.1    Bourret, R.B.2    Simont, M.I.3
  • 129
    • 84899507737 scopus 로고    scopus 로고
    • Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements
    • Leander J, Lundh T, Jirstrand M. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements. Math Biosci. 2014;251:54-62.
    • (2014) Math Biosci. , vol.251 , pp. 54-62
    • Leander, J.1    Lundh, T.2    Jirstrand, M.3
  • 130
    • 84880966843 scopus 로고    scopus 로고
    • The Goodwin model: behind the Hill function
    • Gonze D, Abou-Jaoudé W. The Goodwin model: behind the Hill function. PLoS ONE. 2013;8(8):69573.
    • (2013) PLoS ONE. , vol.8 , Issue.8 , pp. 69573
    • Gonze, D.1    Abou-Jaoudé, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.