-
1
-
-
33747830489
-
Quantitative modeling in cell biology: what is it good for?
-
Mogilner A, Wollman R, Marshall WF. Quantitative modeling in cell biology: what is it good for? Dev Cell. 2006;11(3):279-87.
-
(2006)
Dev Cell.
, vol.11
, Issue.3
, pp. 279-287
-
-
Mogilner, A.1
Wollman, R.2
Marshall, W.F.3
-
4
-
-
77950651089
-
The edges of understanding
-
Lander AD. The edges of understanding. BMC Biol. 2010;8(1):40.
-
(2010)
BMC Biol.
, vol.8
, Issue.1
, pp. 40
-
-
Lander, A.D.1
-
5
-
-
0035464637
-
Systems biology: the reincarnation of systems theory applied in biology?
-
Wolkenhauer O. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform. 2001;2(3):258-70.
-
(2001)
Brief Bioinform.
, vol.2
, Issue.3
, pp. 258-270
-
-
Wolkenhauer, O.1
-
6
-
-
4644268555
-
Mathematical models in microbial systems biology
-
Stelling J. Mathematical models in microbial systems biology. Curr Opin Microbiol. 2004;7(5):513-8.
-
(2004)
Curr Opin Microbiol.
, vol.7
, Issue.5
, pp. 513-518
-
-
Stelling, J.1
-
7
-
-
33644807093
-
Feedback dynamics and cell function: why systems biology is called systems biology
-
Wolkenhauer O, MesarovícM. Feedback dynamics and cell function: why systems biology is called systems biology. Mol BioSyst. 2005;1(1):14-6.
-
(2005)
Mol BioSyst.
, vol.1
, Issue.1
, pp. 14-16
-
-
Wolkenhauer, O.1
Mesarovíc, M.2
-
8
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems: a literature review
-
De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9(1):67-103.
-
(2002)
J Comput Biol.
, vol.9
, Issue.1
, pp. 67-103
-
-
De Jong, H.1
-
9
-
-
0037376655
-
Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell
-
Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Oinion Cell Biol. 2003;15(2):221-31.
-
(2003)
Curr Oinion Cell Biol.
, vol.15
, Issue.2
, pp. 221-231
-
-
Tyson, J.J.1
Chen, K.C.2
Novak, B.3
-
10
-
-
33644524741
-
Cell-signalling dynamics in time and space
-
Kholodenko BN. Cell-signalling dynamics in time and space. Mol Cell Biol. 2006;7(3):165-76.
-
(2006)
Mol Cell Biol.
, vol.7
, Issue.3
, pp. 165-176
-
-
Kholodenko, B.N.1
-
11
-
-
33750533388
-
Physicochemical modelling of cell signalling pathways
-
Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical modelling of cell signalling pathways. Nat Cell Biol. 2006;8(11):1195-203.
-
(2006)
Nat Cell Biol.
, vol.8
, Issue.11
, pp. 1195-1203
-
-
Aldridge, B.B.1
Burke, J.M.2
Lauffenburger, D.A.3
Sorger, P.K.4
-
13
-
-
79551552677
-
Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks
-
Schaber J, Klipp E. Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. Curr Opin Biotechnol. 2011;22:109-16.
-
(2011)
Curr Opin Biotechnol.
, vol.22
, pp. 109-116
-
-
Schaber, J.1
Klipp, E.2
-
14
-
-
84878742739
-
Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism
-
Sunnå ker M, Zamora-Sillero E, Dechant R, Ludwig C, Busetto AG, Wagner A, et al. Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism. Sci Signal. 2013;6(277):41-1.
-
(2013)
Sci Signal.
, vol.6
, Issue.277
, pp. 41-41
-
-
Sunnå ker, M.1
Zamora-Sillero, E.2
Dechant, R.3
Ludwig, C.4
Busetto, A.G.5
Wagner, A.6
-
16
-
-
84923687677
-
Quantitative and logic modelling of molecular and gene networks
-
Le Novère N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet. 2015;16:146-58.
-
(2015)
Nat Rev Genet.
, vol.16
, pp. 146-158
-
-
Le Novère, N.1
-
17
-
-
0028011211
-
Optimal experimental design for parameter estimation in unstructured growth models
-
Baltes M, Schneider R, Sturm C, Reuss M. Optimal experimental design for parameter estimation in unstructured growth models. Biotechnol Prog. 1994;10(5):480-8.
-
(1994)
Biotechnol Prog.
, vol.10
, Issue.5
, pp. 480-488
-
-
Baltes, M.1
Schneider, R.2
Sturm, C.3
Reuss, M.4
-
18
-
-
40149112059
-
Stimulus design for model selection and validation in cell signaling
-
Apgar JF, Toettcher JE, Endy D, White FM, Tidor B. Stimulus design for model selection and validation in cell signaling. PLoS Comput Biol. 2008;4(2):30.
-
(2008)
PLoS Comput Biol.
, vol.4
, Issue.2
, pp. 30
-
-
Apgar, J.F.1
Toettcher, J.E.2
Endy, D.3
White, F.M.4
Tidor, B.5
-
19
-
-
58149232578
-
Parameter estimation and optimal experimental design
-
Banga JR, Balsa-Canto E. Parameter estimation and optimal experimental design. Essays Biochem. 2008;45:195-210.
-
(2008)
Essays Biochem.
, vol.45
, pp. 195-210
-
-
Banga, J.R.1
Balsa-Canto, E.2
-
20
-
-
73449142148
-
Optimal experimental design for parameter estimation of a cell signaling model
-
Bandara S, Schlöder JP, Eils R, Bock HG, Meyer T. Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput Biol. 2009;5(11):1000558.
-
(2009)
PLoS Comput Biol.
, vol.5
, Issue.11
-
-
Bandara, S.1
Schlöder, J.P.2
Eils, R.3
Bock, H.G.4
Meyer, T.5
-
21
-
-
77952481588
-
Parameter identification, experimental design and model falsification for biological network models using semidefinite programming
-
Hasenauer J, Waldherr S, Wagner K, Allgower F. Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. IET Syst Biol. 2010;4(2):119-30.
-
(2010)
IET Syst Biol.
, vol.4
, Issue.2
, pp. 119-130
-
-
Hasenauer, J.1
Waldherr, S.2
Wagner, K.3
Allgower, F.4
-
22
-
-
84900827538
-
Kinetic models in industrial biotechnology-improving cell factory performance
-
Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology-improving cell factory performance. Metab Eng. 2014;24:38-60.
-
(2014)
Metab Eng.
, vol.24
, pp. 38-60
-
-
Almquist, J.1
Cvijovic, M.2
Hatzimanikatis, V.3
Nielsen, J.4
Jirstrand, M.5
-
23
-
-
70349782009
-
Computational design tools for synthetic biology
-
Marchisio MA, Stelling J. Computational design tools for synthetic biology. Curr Opin Biotechnol. 2009;20(4):479-85.
-
(2009)
Curr Opin Biotechnol.
, vol.20
, Issue.4
, pp. 479-485
-
-
Marchisio, M.A.1
Stelling, J.2
-
24
-
-
84879804919
-
Tuning the dials of synthetic biology
-
Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan G-BV, Papachristodoulou A, et al. Tuning the dials of synthetic biology. Microbiology. 2013;159(Pt 7):1236-53.
-
(2013)
Microbiology.
, vol.159
, pp. 1236-1253
-
-
Arpino, J.A.J.1
Hancock, E.J.2
Anderson, J.3
Barahona, M.4
Stan, G.-B.V.5
Papachristodoulou, A.6
-
25
-
-
84893707475
-
Systematic construction of kinetic models from genome-scale metabolic networks
-
Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS ONE. 2013;8(11):79195.
-
(2013)
PLoS ONE.
, vol.8
, Issue.11
, pp. 79195
-
-
Stanford, N.J.1
Lubitz, T.2
Smallbone, K.3
Klipp, E.4
Mendes, P.5
Liebermeister, W.6
-
26
-
-
84864258618
-
A whole-cell computational model predicts phenotype from genotype
-
Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150(2):389-401.
-
(2012)
Cell.
, vol.150
, Issue.2
, pp. 389-401
-
-
Karr, J.R.1
Sanghvi, J.C.2
Macklin, D.N.3
Gutschow, M.V.4
Jacobs, J.M.5
Bolival, B.6
-
28
-
-
58849162806
-
Systems biology: model based evaluation and comparison of potential explanations for given biological data
-
Cedersund G, Roll J. Systems biology: model based evaluation and comparison of potential explanations for given biological data. FEBS J. 2009;276(4):903-22.
-
(2009)
FEBS J.
, vol.276
, Issue.4
, pp. 903-922
-
-
Cedersund, G.1
Roll, J.2
-
30
-
-
84910017586
-
Bridging the gaps in systems biology
-
Cvijovic M, Almquist J, Hagmar J, Hohmann S, Kaltenbach HM, Klipp E, et al. Bridging the gaps in systems biology. Mol Gen Genomics. 2014;289(5):727-34.
-
(2014)
Mol Gen Genomics.
, vol.289
, Issue.5
, pp. 727-734
-
-
Cvijovic, M.1
Almquist, J.2
Hagmar, J.3
Hohmann, S.4
Kaltenbach, H.M.5
Klipp, E.6
-
32
-
-
84921350710
-
The inverse problem in mathematical biology
-
Clermont G, Zenker S. The inverse problem in mathematical biology. Math Biosci. 2015;260:11-5.
-
(2015)
Math Biosci.
, vol.260
, pp. 11-15
-
-
Clermont, G.1
Zenker, S.2
-
33
-
-
33845410054
-
Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments
-
van Riel N. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinforma. 2006;7(4):364-74.
-
(2006)
Brief Bioinforma.
, vol.7
, Issue.4
, pp. 364-374
-
-
van Riel, N.1
-
34
-
-
33750374139
-
Linking data to models: data regression
-
Jaqaman K, Danuser G. Linking data to models: data regression. Mol Cell Biol. 2006;7(11):813-9.
-
(2006)
Mol Cell Biol.
, vol.7
, Issue.11
, pp. 813-819
-
-
Jaqaman, K.1
Danuser, G.2
-
35
-
-
65649102679
-
Recent developments in parameter estimation and structure identification of biochemical and genomic systems
-
Chou IC, Voit EO. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci. 2009;219(2):57-83.
-
(2009)
Math Biosci.
, vol.219
, Issue.2
, pp. 57-83
-
-
Chou, I.C.1
Voit, E.O.2
-
36
-
-
58849106769
-
Systems biology: parameter estimation for biochemical models
-
Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG. Systems biology: parameter estimation for biochemical models. FEBS J. 2009;276(4):886-902.
-
(2009)
FEBS J.
, vol.276
, Issue.4
, pp. 886-902
-
-
Ashyraliyev, M.1
Fomekong-Nanfack, Y.2
Kaandorp, J.A.3
Blom, J.G.4
-
37
-
-
84888062735
-
Parameter uncertainty in biochemical models described by ordinary differential equations
-
Vanlier J, Tiemann CA, Hilbers PAJ, van Riel NAW. Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci. 2013;246(2):305-14.
-
(2013)
Math Biosci.
, vol.246
, Issue.2
, pp. 305-314
-
-
Vanlier, J.1
Tiemann, C.A.2
Hilbers, P.A.J.3
van Riel, N.A.W.4
-
39
-
-
84891892050
-
Reverse engineering and identification in systems biology: strategies, perspectives and challenges
-
Villaverde AF, Banga JR. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2014;11(91):20130505.
-
(2014)
J R Soc Interface.
, vol.11
, Issue.91
-
-
Villaverde, A.F.1
Banga, J.R.2
-
40
-
-
84874020076
-
Advances and selected recent developments in state and parameter estimation
-
Kravaris C, Hahn J, Chu Y. Advances and selected recent developments in state and parameter estimation. Comput Chem Eng. 2013;51:111-23.
-
(2013)
Comput Chem Eng.
, vol.51
, pp. 111-123
-
-
Kravaris, C.1
Hahn, J.2
Chu, Y.3
-
42
-
-
0032406131
-
Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation
-
Mendes P, Kell D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics. 1998;14(10):869-83.
-
(1998)
Bioinformatics.
, vol.14
, Issue.10
, pp. 869-883
-
-
Mendes, P.1
Kell, D.2
-
43
-
-
0034102942
-
Global optimization for the parameter estimation of differential-algebraic systems
-
Esposito WR, Floudas CA. Global optimization for the parameter estimation of differential-algebraic systems. Ind Eng Chem Res. 2000;39: 1291-310.
-
(2000)
Ind Eng Chem Res.
, vol.39
, pp. 1291-1310
-
-
Esposito, W.R.1
Floudas, C.A.2
-
44
-
-
0242574982
-
Parameter estimation in biochemical pathways: a comparison of global optimization methods
-
Moles CG, Mendes P, Banga JR. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 2003;13:2467-474.
-
(2003)
Genome Res.
, vol.13
, pp. 2467-2474
-
-
Moles, C.G.1
Mendes, P.2
Banga, J.R.3
-
45
-
-
33646364037
-
Identification of metabolic system parameters using global optimization methods
-
Polisetty PK, Voit EO, Gatzke EP. Identification of metabolic system parameters using global optimization methods. Theor Biol Med Model. 2006;3(1):4.
-
(2006)
Theor Biol Med Model.
, vol.3
, Issue.1
, pp. 4
-
-
Polisetty, P.K.1
Voit, E.O.2
Gatzke, E.P.3
-
46
-
-
33846045618
-
Global methods for dynamic optimization and mixed-integer dynamic optimization
-
Chachuat B, Singer AB, Barton PI. Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind Eng Chem Res. 2006;45(25):8373-392.
-
(2006)
Ind Eng Chem Res.
, vol.45
, Issue.25
, pp. 8373-8392
-
-
Chachuat, B.1
Singer, A.B.2
Barton, P.I.3
-
47
-
-
77956289955
-
Classic and contemporary approaches to modeling biochemical reactions
-
Chen WW, Niepel M, Sorger PK. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 2010;24(17):1861-75.
-
(2010)
Genes Dev.
, vol.24
, Issue.17
, pp. 1861-1875
-
-
Chen, W.W.1
Niepel, M.2
Sorger, P.K.3
-
48
-
-
84885166438
-
Analyzing and constraining signaling networks: parameter estimation for the user
-
Liu X, Betterton MD, editors, Methods in molecular biology, vol. 880. New York: Humana Press;
-
Geier F, Fengos G, Felizzi F, Iber D. Analyzing and constraining signaling networks: parameter estimation for the user. In: Liu X, Betterton MD, editors. Computational modeling of signaling networks. Methods in molecular biology, vol. 880. New York: Humana Press; 2012. p. 23-40.
-
(2012)
Computational modeling of signaling networks
, pp. 23-40
-
-
Geier, F.1
Fengos, G.2
Felizzi, F.3
Iber, D.4
-
49
-
-
84884755942
-
Lessons learned from quantitative dynamical modeling in systems biology
-
Raue A, Schilling M, Bachmann J, Matteson A, Schelke M, Kaschek D, et al. Lessons learned from quantitative dynamical modeling in systems biology. PLoS ONE. 2013;8(9):74335.
-
(2013)
PLoS ONE.
, vol.8
, Issue.9
, pp. 74335
-
-
Raue, A.1
Schilling, M.2
Bachmann, J.3
Matteson, A.4
Schelke, M.5
Kaschek, D.6
-
51
-
-
41549094989
-
Constraint-based modeling and kinetic analysis of the Smad dependent TGF-β signaling pathway
-
Zi Z, Klipp E. Constraint-based modeling and kinetic analysis of the Smad dependent TGF-β signaling pathway. PLoS ONE. 2007;2(9):936.
-
(2007)
PLoS ONE.
, vol.2
, Issue.9
, pp. 936
-
-
Zi, Z.1
Klipp, E.2
-
52
-
-
0035684378
-
A model for measurement error for gene expression arrays
-
Rocke DM, Durbin B. A model for measurement error for gene expression arrays. J Comput Biol. 2001;8(6):557-69.
-
(2001)
J Comput Biol.
, vol.8
, Issue.6
, pp. 557-569
-
-
Rocke, D.M.1
Durbin, B.2
-
53
-
-
35748945147
-
An error model for protein quantification
-
Kreutz C, Bartolome-Rodriguez M, Maiwald T, Seidl M, Blum H, Mohr L, et al. An error model for protein quantification. Bioinformatics. 2007;23: 2747-753.
-
(2007)
Bioinformatics.
, vol.23
, pp. 2747-2753
-
-
Kreutz, C.1
Bartolome-Rodriguez, M.2
Maiwald, T.3
Seidl, M.4
Blum, H.5
Mohr, L.6
-
54
-
-
31144436446
-
Quantitative data generation for systems biology: the impact of randomisation, calibrators and normalisers
-
Stevenage, United Kingdom: IET
-
Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, et al. Quantitative data generation for systems biology: the impact of randomisation, calibrators and normalisers. In: IEE Proc-Syst Biol, vol.152. Stevenage, United Kingdom: IET; 2005. p. 193-200.
-
(2005)
IEE Proc-Syst Biol
, vol.152
, pp. 193-200
-
-
Schilling, M.1
Maiwald, T.2
Bohl, S.3
Kollmann, M.4
Kreutz, C.5
Timmer, J.6
-
55
-
-
11244346557
-
Variance stabilization applied to microarray data calibration and to the quantification of differential expression
-
Huber W, Von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(suppl 1): 96-104.
-
(2002)
Bioinformatics.
, vol.18
, pp. 96-104
-
-
Huber, W.1
Von Heydebreck, A.2
Sültmann, H.3
Poustka, A.4
Vingron, M.5
-
56
-
-
0012572299
-
A variance-stabilizing transformation for gene-expression microarray data
-
Durbin BP, Hardin JS, Hawkins DM, Rocke DM. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics. 2002;18(suppl 1):105-10.
-
(2002)
Bioinformatics.
, vol.18
, pp. 105-110
-
-
Durbin, B.P.1
Hardin, J.S.2
Hawkins, D.M.3
Rocke, D.M.4
-
59
-
-
67650760503
-
Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
-
Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics. 2009;25(15):1923-9.
-
(2009)
Bioinformatics.
, vol.25
, Issue.15
, pp. 1923-1929
-
-
Raue, A.1
Kreutz, C.2
Maiwald, T.3
Bachmann, J.4
Schilling, M.5
Klingmüller, U.6
-
60
-
-
77949475400
-
An iterative identification procedure for dynamicmodeling of biochemical networks
-
Balsa-Canto E, Alonso AA, Banga JR. An iterative identification procedure for dynamicmodeling of biochemical networks. BMC Syst Biol. 2010;4:11.
-
(2010)
BMC Syst Biol.
, vol.4
, pp. 11
-
-
Balsa-Canto, E.1
Alonso, A.A.2
Banga, J.R.3
-
61
-
-
33748057502
-
Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems
-
Joshi M, Seidel-Morgenstern A, Kremling A. Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. Metab Eng. 2006;8(5):447-55.
-
(2006)
Metab Eng.
, vol.8
, Issue.5
, pp. 447-455
-
-
Joshi, M.1
Seidel-Morgenstern, A.2
Kremling, A.3
-
63
-
-
1642380461
-
The problem of overfitting
-
Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44(1):1-12.
-
(2004)
J Chem Inf Comput Sci.
, vol.44
, Issue.1
, pp. 1-12
-
-
Hawkins, D.M.1
-
64
-
-
0001484947
-
Optimization and sensitivity analysis for multiresponse parameter estimation in systems of ordinary differential equations
-
Guay M, McLean DD. Optimization and sensitivity analysis for multiresponse parameter estimation in systems of ordinary differential equations. Comput Chem Eng. 1995;19(12):1271-85.
-
(1995)
Comput Chem Eng.
, vol.19
, Issue.12
, pp. 1271-1285
-
-
Guay, M.1
McLean, D.D.2
-
65
-
-
0033522751
-
Second-order sensitivities of general dynamic systems with application to optimal control problems
-
Vassiliadis VS, Canto EB, Banga JR. Second-order sensitivities of general dynamic systems with application to optimal control problems. Chem Eng Sci. 1999;54(17):3851-860.
-
(1999)
Chem Eng Sci.
, vol.54
, Issue.17
, pp. 3851-3860
-
-
Vassiliadis, V.S.1
Canto, E.B.2
Banga, J.R.3
-
66
-
-
0033895382
-
A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
-
McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 2000;42(1):55-61.
-
(2000)
Technometrics.
, vol.42
, Issue.1
, pp. 55-61
-
-
McKay, M.D.1
Beckman, R.J.2
Conover, W.J.3
-
67
-
-
33751423943
-
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
-
Rodriguez-Fernandez M, Egea JA, Banga JR. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinforma. 2006;7:483.
-
(2006)
BMC Bioinforma.
, vol.7
, pp. 483
-
-
Rodriguez-Fernandez, M.1
Egea, J.A.2
Banga, J.R.3
-
68
-
-
77951142621
-
Systematic calibration of a cell signaling network model
-
Kim KA, Spencer SL, Albeck JG, Burke JM, Sorger PK, Gaudet S, et al. Systematic calibration of a cell signaling network model. BMC Bioinforma. 2010. 11(202).
-
(2010)
BMC Bioinforma
, vol.11
, Issue.202
-
-
Kim, K.A.1
Spencer, S.L.2
Albeck, J.G.3
Burke, J.M.4
Sorger, P.K.5
Gaudet, S.6
-
70
-
-
33644509534
-
Global dynamic optimization for parameter estimation in chemical kinetics
-
Singer AB, Taylor JW, Barton PI, Green Jr WH. Global dynamic optimization for parameter estimation in chemical kinetics. J Phys Chem. 2006;110(3):971-6.
-
(2006)
J Phys Chem.
, vol.110
, Issue.3
, pp. 971-976
-
-
Singer, A.B.1
Taylor, J.W.2
Barton, P.I.3
Green, W.H.4
-
71
-
-
84860666182
-
Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems
-
Miró A, Pozo C, Guillén-Gosálbez G, Egea JA, Jiménez L. Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinforma. 2012;13(1):90.
-
(2012)
BMC Bioinforma.
, vol.13
, Issue.1
, pp. 90
-
-
Miró, A.1
Pozo, C.2
Guillén-Gosálbez, G.3
Egea, J.A.4
Jiménez, L.5
-
72
-
-
32044474451
-
A hybrid approach for efficient and robust parameter estimation in biochemical pathways
-
Rodriguez-Fernandez M, Mendes P, Banga JR. A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Bio Syst. 2006;83(2-3):248-65.
-
(2006)
Bio Syst.
, vol.83
, Issue.2-3
, pp. 248-265
-
-
Rodriguez-Fernandez, M.1
Mendes, P.2
Banga, J.R.3
-
73
-
-
81455142792
-
Parameter estimation using metaheuristics in systems biology: a comprehensive review
-
Sun J, Garibaldi JM, Hodgman C. Parameter estimation using metaheuristics in systems biology: a comprehensive review. Comput Biol Bioinforma, IEEE/ACM Trans on. 2012;9(1):185-202.
-
(2012)
Comput Biol Bioinforma, IEEE/ACM Trans on.
, vol.9
, Issue.1
, pp. 185-202
-
-
Sun, J.1
Garibaldi, J.M.2
Hodgman, C.3
-
74
-
-
41849104688
-
Hybrid optimization method with general switching strategy for parameter estimation
-
Balsa-Canto E, Peifer M, Banga JR, Timmer J, Fleck C. Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst Biol. 2008;2(1):26.
-
(2008)
BMC Syst Biol.
, vol.2
, Issue.1
, pp. 26
-
-
Balsa-Canto, E.1
Peifer, M.2
Banga, J.R.3
Timmer, J.4
Fleck, C.5
-
75
-
-
69549124230
-
An evolutionary method for complex-process optimization
-
Egea JA, Martí R, Banga JR. An evolutionary method for complex-process optimization. Comput Oper Res. 2010;37(2):315-24.
-
(2010)
Comput Oper Res.
, vol.37
, Issue.2
, pp. 315-324
-
-
Egea, J.A.1
Martí, R.2
Banga, J.R.3
-
76
-
-
84869217594
-
Incremental parameter estimation of kinetic metabolic network models
-
Jia G, Stephanopoulos G, Gunawan R. Incremental parameter estimation of kinetic metabolic network models. BMC Syst Biol. 2012;6:142.
-
(2012)
BMC Syst Biol.
, vol.6
, pp. 142
-
-
Jia, G.1
Stephanopoulos, G.2
Gunawan, R.3
-
77
-
-
84954310875
-
Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study
-
Fan M, Kuwahara H, Wang X, Wang S, Gao X. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study. Brief Bioinforma. 2015;015:.
-
(2015)
Brief Bioinforma.
, vol.15
-
-
Fan, M.1
Kuwahara, H.2
Wang, X.3
Wang, S.4
Gao, X.5
-
81
-
-
0002541945
-
Ockham's razor and Bayesian analysis
-
Jefferys WH, Berger JO. Ockham's razor and Bayesian analysis. Am Sci. 1992;80(1):64-72.
-
(1992)
Am Sci.
, vol.80
, Issue.1
, pp. 64-72
-
-
Jefferys, W.H.1
Berger, J.O.2
-
82
-
-
0040675320
-
On different facets of regularization theory
-
Chen Z, Haykin S. On different facets of regularization theory. Neural Comput. 2002;2846(12):2791-846.
-
(2002)
Neural Comput.
, vol.2846
, Issue.12
, pp. 2791-2846
-
-
Chen, Z.1
Haykin, S.2
-
83
-
-
80051748187
-
Dynamic causal modelling: a critical review of the biophysical and statistical foundations
-
Daunizeau J, David O, Stephan K. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. NeuroImage. 2011;58(2):312-22.
-
(2011)
NeuroImage.
, vol.58
, Issue.2
, pp. 312-322
-
-
Daunizeau, J.1
David, O.2
Stephan, K.3
-
84
-
-
0004094721
-
-
Cambridge, MA, USA: MIT press;
-
Schölkopf B, Smola AJ. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT press; 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
85
-
-
79955564733
-
Comparing parameter choice methods for regularization of ill-posed problems
-
Bauer F, Lukas MA. Comparing parameter choice methods for regularization of ill-posed problems. Math Comput Simul. 2011;81(9): 1795-841.
-
(2011)
Math Comput Simul.
, vol.81
, Issue.9
, pp. 1795-1841
-
-
Bauer, F.1
Lukas, M.A.2
-
87
-
-
84885708590
-
What can regularization offer for estimation of dynamical systems?
-
Giri F, Van Assche V, editors, Caen, France: IFAC;
-
Ljung L, Chen T. What can regularization offer for estimation of dynamical systems? In: Giri F, Van Assche V, editors. 11th IFAC International workshop on adaptation and learning in control and signal processing. Caen, France: IFAC; 2013. p. 1-8.
-
(2013)
11th IFAC International workshop on adaptation and learning in control and signal processing
, pp. 1-8
-
-
Ljung, L.1
Chen, T.2
-
88
-
-
84862792654
-
Inverse problems in systems biology
-
Engl HW, Flamm C, Kügler P, Lu J, Müller S, Schuster P, et al. Inverse problems in systems biology. Inverse Probl. 2009;25(12):123014.
-
(2009)
Inverse Probl.
, vol.25
, Issue.12
-
-
Engl, H.W.1
Flamm, C.2
Kügler, P.3
Lu, J.4
Müller, S.5
Schuster, P.6
-
89
-
-
84868696134
-
Regularization of inverse problems to determine transcription factor profiles from fluorescent reporter systems
-
Bansal L, Chu Y, Laird C, Hahn J. Regularization of inverse problems to determine transcription factor profiles from fluorescent reporter systems. AIChE J. 2012;58(12):3751-762.
-
(2012)
AIChE J.
, vol.58
, Issue.12
, pp. 3751-3762
-
-
Bansal, L.1
Chu, Y.2
Laird, C.3
Hahn, J.4
-
90
-
-
84892877494
-
Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm
-
Wang H, Wang XC. Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm. J Theor Biol. 2014;343:199-207.
-
(2014)
J Theor Biol.
, vol.343
, pp. 199-207
-
-
Wang, H.1
Wang, X.C.2
-
91
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc: Series B. 1996;58(1):267-88.
-
(1996)
J R Stat Soc: Series B.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
92
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc: Series B. 2005;67(2):301-20.
-
(2005)
J R Stat Soc: Series B.
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
93
-
-
36149035969
-
Maximum entropy regularization of Fredholm integral equations of the first kind
-
Amato U, Hughes W. Maximum entropy regularization of Fredholm integral equations of the first kind. Inverse Probl. 1991;7:793-808.
-
(1991)
Inverse Probl.
, vol.7
, pp. 793-808
-
-
Amato, U.1
Hughes, W.2
-
94
-
-
84950445313
-
Cross-validation of regression models
-
Picard RR, Cook RD. Cross-validation of regression models. J Am Stat Assoc. 1984;79(387):575-83.
-
(1984)
J Am Stat Assoc.
, vol.79
, Issue.387
, pp. 575-583
-
-
Picard, R.R.1
Cook, R.D.2
-
95
-
-
84952126648
-
Validation of regression models: methods and examples
-
Snee RD. Validation of regression models: methods and examples. Technometrics. 1977;19(4):415-28.
-
(1977)
Technometrics.
, vol.19
, Issue.4
, pp. 415-428
-
-
Snee, R.D.1
-
96
-
-
0031084233
-
On Tikhonov Reguhrization, bias and variance in nonlinear system identification
-
Johansent TA. On Tikhonov Reguhrization, bias and variance in nonlinear system identification. Automatica. 1997;33(3):441-6.
-
(1997)
Automatica.
, vol.33
, Issue.3
, pp. 441-446
-
-
Johansent, T.A.1
-
97
-
-
0027152751
-
Overtraining, regularization, and searching for minimum in neural networks
-
Dugard L, Msaad M, Landau ID, editors, Grenoble: Pergamon Press, Oxford;
-
Sjöberg J, Ljung L. Overtraining, regularization, and searching for minimum in neural networks In: Dugard L, Msaad M, Landau ID, editors. IFAC Symposia series, adaptive systems in control and signal processing. Grenoble: Pergamon Press, Oxford; 1992. p. 73-8.
-
(1992)
IFAC Symposia series, adaptive systems in control and signal processing
, pp. 73-78
-
-
Sjöberg, J.1
Ljung, L.2
-
98
-
-
0016333007
-
Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations
-
Gupta NK, Mehra RK. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations. IEEE Trans Autom Control. 1974;19(6):774-83.
-
(1974)
IEEE Trans Autom Control.
, vol.19
, Issue.6
, pp. 774-783
-
-
Gupta, N.K.1
Mehra, R.K.2
-
99
-
-
0000481011
-
Sensitivity analysis of complex kinetic systems. Tools and applications
-
Turányi T. Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem. 1990;5(3):203-48.
-
(1990)
J Math Chem.
, vol.5
, Issue.3
, pp. 203-248
-
-
Turányi, T.1
-
100
-
-
0028441801
-
Identifiability and distinguishability of general reaction systems
-
Vajda S, Rabitz H. Identifiability and distinguishability of general reaction systems. J Phys Chem. 1994;98(20):5265-271.
-
(1994)
J Phys Chem.
, vol.98
, Issue.20
, pp. 5265-5271
-
-
Vajda, S.1
Rabitz, H.2
-
101
-
-
2442606579
-
Selection of model parameters for off-line parameter estimation
-
Li R, Henson MA, Kurtz MJ. Selection of model parameters for off-line parameter estimation. IEEE Trans Control Syst Technol. 2004;12(3): 402-12.
-
(2004)
IEEE Trans Control Syst Technol.
, vol.12
, Issue.3
, pp. 402-412
-
-
Li, R.1
Henson, M.A.2
Kurtz, M.J.3
-
102
-
-
35748977901
-
Universally sloppy parameter sensitivities in systems biology models
-
Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007;3(10):189.
-
(2007)
PLoS Comput Biol.
, vol.3
, Issue.10
, pp. 189
-
-
Gutenkunst, R.N.1
Waterfall, J.J.2
Casey, F.P.3
Brown, K.S.4
Myers, C.R.5
Sethna, J.P.6
-
105
-
-
0000570697
-
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
-
Hansen PC. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve. SIAM Rev. 1992;34(4):561-80.
-
(1992)
SIAM Rev.
, vol.34
, Issue.4
, pp. 561-580
-
-
Hansen, P.C.1
-
106
-
-
0001632418
-
The use of the L-Curve in the regularization of discrete ill-posed problems
-
Hansen PC, O'Leary DP. The use of the L-Curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput. 1993;14(6):1487-503.
-
(1993)
SIAM J Sci Comput.
, vol.14
, Issue.6
, pp. 1487-1503
-
-
Hansen, P.C.1
O'Leary, D.P.2
-
107
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
Golub GH, Heath MT, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics. 1979;21: 215-23.
-
(1979)
Technometrics.
, vol.21
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.T.2
Wahba, G.3
-
108
-
-
79955568494
-
Robust GCV choice of the regularization parameter for correlated data
-
Lukas MA. Robust GCV choice of the regularization parameter for correlated data. J Integr Equ Appl. 2010;22(3):519-47.
-
(2010)
J Integr Equ Appl.
, vol.22
, Issue.3
, pp. 519-547
-
-
Lukas, M.A.1
-
109
-
-
44449133545
-
Strong robust generalized cross-validation ot choosing the regularization parameter
-
Lukas MA. Strong robust generalized cross-validation ot choosing the regularization parameter. Inverse Probl. 2008;24(3):34006-34021.
-
(2008)
Inverse Probl.
, vol.24
, Issue.3
, pp. 34006-34021
-
-
Lukas, M.A.1
-
110
-
-
85052358123
-
Improved parameter estimation in kinetic models: tuning of regularization methods
-
Mendes P, Dada J, Smallbone K, editors. Manchester: Springer
-
Gábor A, Banga JR. Improved parameter estimation in kinetic models: tuning of regularization methods In: Mendes P, Dada J, Smallbone K, editors. 13th Conference on computational methods in systems biology. Manchester: Springer; 2014.
-
(2014)
13th Conference on computational methods in systems biology
-
-
Gábor, A.1
Banga, J.R.2
-
111
-
-
84988553347
-
Does data splitting improve prediction?
-
Faraway JJ. Does data splitting improve prediction? Stat Comput. 2014;1-12.
-
(2014)
Stat Comput
, pp. 1-12
-
-
Faraway, J.J.1
-
112
-
-
85102332811
-
-
3rd edn. New Jersey: Wiley & Sons, Inc
-
Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods, 3rd edn. New Jersey: Wiley & Sons, Inc; 2014, pp. 1-844.
-
(2014)
Nonparametric statistical methods
, pp. 1-844
-
-
Hollander, M.1
Wolfe, D.A.2
Chicken, E.3
-
114
-
-
84966214028
-
An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates
-
Gfrerer H. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math Comput. 1987;49(180):507.
-
(1987)
Math Comput.
, vol.49
, Issue.180
, pp. 507
-
-
Gfrerer, H.1
-
115
-
-
33745766913
-
On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data
-
Hämarik U, Raus T. On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data. J Inverse Ill-posed Probl. 2006;14(3):251-66.
-
(2006)
J Inverse Ill-posed Probl.
, vol.14
, Issue.3
, pp. 251-266
-
-
Hämarik, U.1
Raus, T.2
-
116
-
-
21944442815
-
On the monotone error rule for parameter choice in iterative and continuous regularization methods
-
Hämarik U, Tautenhahn U. On the monotone error rule for parameter choice in iterative and continuous regularization methods. BIT. 2001;41(5):1029-38.
-
(2001)
BIT.
, vol.41
, Issue.5
, pp. 1029-1038
-
-
Hämarik, U.1
Tautenhahn, U.2
-
117
-
-
0000012624
-
On a problem of adaptive estimation in Gaussian White noise
-
Lepskii O. On a problem of adaptive estimation in Gaussian White noise. Theory Probab Its Appl. 1991;35(3):454-66.
-
(1991)
Theory Probab Its Appl.
, vol.35
, Issue.3
, pp. 454-466
-
-
Lepskii, O.1
-
118
-
-
33947424437
-
Some considerations concerning regularization and parameter choice algorithms
-
Bauer F. Some considerations concerning regularization and parameter choice algorithms. Inverse Probl. 2007;23(2):837-58.
-
(2007)
Inverse Probl.
, vol.23
, Issue.2
, pp. 837-858
-
-
Bauer, F.1
-
119
-
-
0000169154
-
A regularization parameter in discrete Ill-posed problems
-
Regínska T. A regularization parameter in discrete Ill-posed problems. SIAM J Sci Comput. 1996;17(3):740-9.
-
(1996)
SIAM J Sci Comput.
, vol.17
, Issue.3
, pp. 740-749
-
-
Regínska, T.1
-
120
-
-
55349117124
-
Error estimates for linear systems with applications to regularization
-
Brezinski C, Rodriguez G, Seatzu S. Error estimates for linear systems with applications to regularization. Numer Algo. 2008;49:85-104.
-
(2008)
Numer Algo.
, vol.49
, pp. 85-104
-
-
Brezinski, C.1
Rodriguez, G.2
Seatzu, S.3
-
121
-
-
78649728812
-
Parameter choice methods using minimization schemes
-
Bauer F, Mathe P. Parameter choice methods using minimization schemes. J Complex. 2011;27:68-85.
-
(2011)
J Complex.
, vol.27
, pp. 68-85
-
-
Bauer, F.1
Mathe, P.2
-
122
-
-
0000544453
-
Practical approximate solutions to linear operator equations when the data are noisy
-
Wahba G. Practical approximate solutions to linear operator equations when the data are noisy. SIAM J Numer Anal. 1977;14(4):651-67.
-
(1977)
SIAM J Numer Anal.
, vol.14
, Issue.4
, pp. 651-667
-
-
Wahba, G.1
-
124
-
-
53349102813
-
Impulses and physiological states in theoretical models of nerve membrane
-
FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J. 1961;1(6):445-66.
-
(1961)
Biophys J.
, vol.1
, Issue.6
, pp. 445-466
-
-
FitzHugh, R.1
-
125
-
-
6344238035
-
An active pulse transmission line simulating nerve axon
-
Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE. 1962;50(10):2061-070.
-
(1962)
Proc IRE.
, vol.50
, Issue.10
, pp. 2061-2070
-
-
Nagumo, J.1
Arimoto, S.2
Yoshizawa, S.3
-
126
-
-
0034019315
-
Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades
-
Kholodenko BN. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem. 2000;267(6):1583-8.
-
(2000)
Eur J Biochem.
, vol.267
, Issue.6
, pp. 1583-1588
-
-
Kholodenko, B.N.1
-
127
-
-
0013823048
-
Oscillatory behavior in enzymatic control processes
-
Goodwin BC. Oscillatory behavior in enzymatic control processes. Adv Enzym Regul. 1965;3:425-38.
-
(1965)
Adv Enzym Regul.
, vol.3
, pp. 425-438
-
-
Goodwin, B.C.1
-
128
-
-
0027231876
-
Computer simulation of the phosphorylation cascade controlling bacterial Chemotaxis
-
Bray D, Bourret RB, Simont MI. Computer simulation of the phosphorylation cascade controlling bacterial Chemotaxis. Mol Biol Cell. 1993;4(May):469-82.
-
(1993)
Mol Biol Cell.
, vol.4
, Issue.MAY
, pp. 469-482
-
-
Bray, D.1
Bourret, R.B.2
Simont, M.I.3
-
129
-
-
84899507737
-
Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements
-
Leander J, Lundh T, Jirstrand M. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements. Math Biosci. 2014;251:54-62.
-
(2014)
Math Biosci.
, vol.251
, pp. 54-62
-
-
Leander, J.1
Lundh, T.2
Jirstrand, M.3
-
130
-
-
84880966843
-
The Goodwin model: behind the Hill function
-
Gonze D, Abou-Jaoudé W. The Goodwin model: behind the Hill function. PLoS ONE. 2013;8(8):69573.
-
(2013)
PLoS ONE.
, vol.8
, Issue.8
, pp. 69573
-
-
Gonze, D.1
Abou-Jaoudé, W.2
|