메뉴 건너뛰기




Volumn 81, Issue 9, 2011, Pages 1795-1841

Comparingparameter choice methods for regularization of ill-posed problems

Author keywords

Ill posed problem; Inverse problem; Regularization parameter; Spectral cut off regularization; Tikhonov regularization

Indexed keywords

CUT-OFF; ILL POSED PROBLEM; KNOW-HOW; LINEAR INVERSE PROBLEMS; PARAMETER CHOICE; REGULARIZATION PARAMETERS; SIMULATION RESULT; SIMULATION STUDIES; STOCHASTIC NOISE; STOCHASTIC SETTINGS; TEST CASE; TIKHONOV REGULARIZATION;

EID: 79955564733     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matcom.2011.01.016     Document Type: Article
Times cited : (284)

References (146)
  • 1
    • 58149279151 scopus 로고    scopus 로고
    • Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function
    • J.F.P.J. Abascal, S.R. Arridge, R.H. Bayford, and D.S. Holder Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function Physiol. Meas. 29 2008 1319 1334
    • (2008) Physiol. Meas. , vol.29 , pp. 1319-1334
    • Abascal, J.F.P.J.1    Arridge, S.R.2    Bayford, R.H.3    Holder, D.S.4
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akadémiai Kiadó Budapest
    • H. Akaike Information theory and an extension of the maximum likelihood principle Second International Symposium on Information Theory (Tsahkadsor, 1971) 1973 Akadémiai Kiadó Budapest 267 281
    • (1971) Second International Symposium on Information Theory Tsahkadsor , pp. 267-281
    • Akaike, H.1
  • 3
    • 41549119442 scopus 로고    scopus 로고
    • Parameter selection methods for axisymmetric flame tomography through Tikhonov regularizaron
    • DOI 10.1364/AO.47.000407
    • E.O. kesson, and K.J. Daun Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization Appl. Opt. 47 2008 407 416 (Pubitemid 351462481)
    • (2008) Applied Optics , vol.47 , Issue.3 , pp. 407-416
    • Akesson, E.O.1    Daun, K.J.2
  • 4
    • 5244289648 scopus 로고
    • On the stability of iterative methods for the solution of linear ill-posed problems
    • O. Alifanov, and S. Rumyantsev On the stability of iterative methods for the solution of linear ill-posed problems Sov. Math., Dokl. 20 1979 1133 1136
    • (1979) Sov. Math., Dokl. , vol.20 , pp. 1133-1136
    • Alifanov, O.1    Rumyantsev, S.2
  • 5
    • 0001061872 scopus 로고
    • Numerical differentiation procedures for non-exact data
    • R.S. Anderssen, and P. Bloomfield Numerical differentiation procedures for non-exact data Numer. Math. 22 1974 157 182
    • (1974) Numer. Math. , vol.22 , pp. 157-182
    • Anderssen, R.S.1    Bloomfield, P.2
  • 6
    • 0012937510 scopus 로고
    • Pseudo-solution de l'équation Ax = y
    • R. Arcangeli Pseudo-solution de l'équation Ax = y C.R. Acad. Sci. Paris, Ser. A 263 8 1966 282 285
    • (1966) C.R. Acad. Sci. Paris, Ser. A , vol.263 , Issue.8 , pp. 282-285
    • Arcangeli, R.1
  • 7
    • 0013178793 scopus 로고
    • Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion
    • A.B. Bakushinskii Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion U.S.S.R. Comp. Math. Math. Phys. 24 1984 181 182
    • (1984) U.S.S.R. Comp. Math. Math. Phys. , vol.24 , pp. 181-182
    • Bakushinskii, A.B.1
  • 8
    • 17044393822 scopus 로고    scopus 로고
    • On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems
    • DOI 10.1081/NFA-200051631
    • A. Bakushinsky, and A. Smirnova On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems Numer. Funct. Anal. Optim. 26 2005 35 48 (Pubitemid 40494000)
    • (2005) Numerical Functional Analysis and Optimization , vol.26 , Issue.1 , pp. 35-48
    • Bakushinsky, A.1    Smirnova, A.2
  • 9
    • 33947424437 scopus 로고    scopus 로고
    • Some considerations concerning regularization and parameter choice algorithms
    • DOI 10.1088/0266-5611/23/2/021, PII S0266561107276051, 021
    • F. Bauer Some considerations concerning regularization and parameter choice algorithms Inverse Probl. 23 2007 837 858 (Pubitemid 46453837)
    • (2007) Inverse Problems , vol.23 , Issue.2 , pp. 837-858
    • Bauer, F.1
  • 12
    • 28544447290 scopus 로고    scopus 로고
    • A Lepskij-type stopping rule for regularized Newton methods
    • DOI 10.1088/0266-5611/21/6/011, PII S0266561105022355
    • F. Bauer, and T. Hohage A Lepskij-type stopping rule for regularized Newton methods Inverse Probl. 21 2005 1975 1991 (Pubitemid 41744510)
    • (2005) Inverse Problems , vol.21 , Issue.6 , pp. 1975-1991
    • Bauer, F.1    Hohage, T.2
  • 13
    • 73449123317 scopus 로고    scopus 로고
    • Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise
    • F. Bauer, T. Hohage, and A. Munk Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise SIAM J. Numer. Anal. 47 2009 1827 1846
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1827-1846
    • Bauer, F.1    Hohage, T.2    Munk, A.3
  • 14
    • 44449090402 scopus 로고    scopus 로고
    • The quasi-optimality criterion for classical inverse problems
    • F. Bauer, and S. Kindermann The quasi-optimality criterion for classical inverse problems Inverse Probl. 24 2008 035002
    • (2008) Inverse Probl. , vol.24 , pp. 035002
    • Bauer, F.1    Kindermann, S.2
  • 15
    • 59449104380 scopus 로고    scopus 로고
    • Recent results on the quasi-optimality principle
    • F. Bauer, and S. Kindermann Recent results on the quasi-optimality principle J. Inverse Ill-Posed Probl. 17 2009 5 18
    • (2009) J. Inverse Ill-Posed Probl. , vol.17 , pp. 5-18
    • Bauer, F.1    Kindermann, S.2
  • 16
    • 78649728812 scopus 로고    scopus 로고
    • Parameter choice methods using minimization schemes
    • doi:10.1016/j.jco.2010.10.001
    • F. Bauer, and P. Mathé Parameter choice methods using minimization schemes J. Complexity 2010 doi:10.1016/j.jco.2010.10.001
    • (2010) J. Complexity
    • Bauer, F.1    Mathé, P.2
  • 17
    • 34250161643 scopus 로고    scopus 로고
    • Optimal regularization for ill-posed problems in metric spaces
    • DOI 10.1515/JIIP.2007.007
    • F. Bauer, and A. Munk Optimal regularization for ill-posed problems in metric spaces J. Inverse Ill-Posed Probl. 15 2007 137 148 (Pubitemid 46900005)
    • (2007) Journal of Inverse and Ill-Posed Problems , vol.15 , Issue.2 , pp. 137-148
    • Bauer, F.1    Munk, A.2
  • 18
    • 28544447018 scopus 로고    scopus 로고
    • Regularization without preliminary knowledge of smoothness and error behaviour
    • DOI 10.1017/S0956792505006236, PII S0956792505006236
    • F. Bauer, and S. Pereverzev Regularization without preliminary knowledge of smoothness and error behavior Eur. J. Appl. Math. 16 2005 303 317 (Pubitemid 41742826)
    • (2005) European Journal of Applied Mathematics , vol.16 , Issue.3 , pp. 303-317
    • Bauer, F.1    Pereverzev, S.2
  • 19
    • 54749096731 scopus 로고    scopus 로고
    • Regularization independent of the noise level: An analysis of quasi-optimality
    • F. Bauer, and M. Reiß Regularization independent of the noise level: an analysis of quasi-optimality Inverse Probl. 24 2008 055009
    • (2008) Inverse Probl. , vol.24 , pp. 055009
    • Bauer, F.1    Reiß, M.2
  • 20
    • 55349117124 scopus 로고    scopus 로고
    • Error estimates for linear systems with applications to regularization
    • C. Brezinski, G. Rodriguez, and S. Seatzu Error estimates for linear systems with applications to regularization Numer. Algorithms 49 2008 85 104
    • (2008) Numer. Algorithms , vol.49 , pp. 85-104
    • Brezinski, C.1    Rodriguez, G.2    Seatzu, S.3
  • 21
    • 67349221716 scopus 로고    scopus 로고
    • Error estimates for the regularization of least squares problems
    • C. Brezinski, G. Rodriguez, and S. Seatzu Error estimates for the regularization of least squares problems Numer. Algorithms 51 2009 61 76
    • (2009) Numer. Algorithms , vol.51 , pp. 61-76
    • Brezinski, C.1    Rodriguez, G.2    Seatzu, S.3
  • 22
    • 0030335402 scopus 로고    scopus 로고
    • Asymptotic equivalence of nonparametric regression and white noise
    • L.D. Brown, and M.G. Low Asymptotic equivalence of nonparametric regression and white noise Ann. Stat. 24 1996 2384 2398
    • (1996) Ann. Stat. , vol.24 , pp. 2384-2398
    • Brown, L.D.1    Low, M.G.2
  • 24
    • 33646748681 scopus 로고    scopus 로고
    • Modern statistical estimation via oracle inequalities
    • E.J. Cands Modern statistical estimation via oracle inequalities Acta Numer. 15 2006 257 325
    • (2006) Acta Numer. , vol.15 , pp. 257-325
    • Cands, E.J.1
  • 25
    • 44449170288 scopus 로고    scopus 로고
    • Nonparametric statistical inverse problems
    • L. Cavalier Nonparametric statistical inverse problems Inverse Probl. 24 2008 034004 19
    • (2008) Inverse Probl. , vol.24 , pp. 034004
    • Cavalier, L.1
  • 27
    • 33845345610 scopus 로고    scopus 로고
    • Risk hull method and regularization by projections of ill-posed inverse problems
    • DOI 10.1214/009053606000000542
    • L. Cavalier, and Y. Golubev Risk hull method and regularization by projections of ill-posed inverse problems Ann. Stat. 34 2006 1653 1677 (Pubitemid 44875076)
    • (2006) Annals of Statistics , vol.34 , Issue.4 , pp. 1653-1677
    • Cavalier, L.1    Golubev, Yu.2
  • 29
    • 70349232446 scopus 로고    scopus 로고
    • Selection of regularization parameter for optical topography
    • T. Correia, A. Gibson, M. Schweiger, and J. Hebden Selection of regularization parameter for optical topography J. Biomed. Opt. 14 2009 034044
    • (2009) J. Biomed. Opt. , vol.14 , pp. 034044
    • Correia, T.1    Gibson, A.2    Schweiger, M.3    Hebden, J.4
  • 30
    • 0011509320 scopus 로고
    • Approximation of method of regularization estimators
    • D.D. Cox Approximation of method of regularization estimators Ann. Stat. 16 1988 694 712
    • (1988) Ann. Stat. , vol.16 , pp. 694-712
    • Cox, D.D.1
  • 31
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • P. Craven, and G. Wahba Smoothing noisy data with spline functions Numer. Math. 31 1979 377 403
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 32
    • 1842665178 scopus 로고    scopus 로고
    • Confidence intervals for nonparametric curve estimates: Toward more uniform pointwise coverage
    • D.J. Cummins, T.G. Filloon, and D. Nychka Confidence intervals for nonparametric curve estimates: toward more uniform pointwise coverage J. Am. Stat. Assoc. 96 2001 233 246
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 233-246
    • Cummins, D.J.1    Filloon, T.G.2    Nychka, D.3
  • 33
    • 0006087771 scopus 로고
    • On the maximum likelihood regularization of Fredholm convolution equations of the first kind
    • Academic Press London
    • A.R. Davies On the maximum likelihood regularization of Fredholm convolution equations of the first kind C. Baker, G. Miller, Treatment of Integral Equations by Numerical Methods 1982 Academic Press London 95 105
    • (1982) Treatment of Integral Equations by Numerical Methods , pp. 95-105
    • Davies, A.R.1
  • 34
    • 3342976806 scopus 로고
    • Improved estimates of statistical regularization parameters in Fourier differentiation and smoothing
    • A.R. Davies, and R.S. Anderssen Improved estimates of statistical regularization parameters in Fourier differentiation and smoothing Numer. Math. 48 1986 671 697
    • (1986) Numer. Math. , vol.48 , pp. 671-697
    • Davies, A.R.1    Anderssen, R.S.2
  • 35
    • 33845884886 scopus 로고    scopus 로고
    • Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise
    • DOI 10.1007/s00190-006-0074-4
    • P. Ditmar, R. Klees, and X. Liu Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise J. Geod. 81 2007 81 96 (Pubitemid 46023970)
    • (2007) Journal of Geodesy , vol.81 , Issue.1 , pp. 81-96
    • Ditmar, P.1    Klees, R.2    Liu, X.3
  • 36
    • 0344120808 scopus 로고    scopus 로고
    • Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: Regularization issues
    • DOI 10.1007/s00190-003-0349-y
    • P. Ditmar, J. Kusche, and R. Klees Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues J. Geod. 77 2003 465 477 (Pubitemid 37458424)
    • (2003) Journal of Geodesy , vol.77 , Issue.7-8 , pp. 465-477
    • Ditmar, P.1    Kusche, J.2    Klees, R.3
  • 37
    • 0035631611 scopus 로고    scopus 로고
    • Selection criteria for scatterplot smoothers
    • B. Efron Selection criteria for scatterplot smoothers Ann. Stat. 29 2001 470 504
    • (2001) Ann. Stat. , vol.29 , pp. 470-504
    • Efron, B.1
  • 38
    • 0002626762 scopus 로고
    • A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems
    • L. Eldén A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems BIT 24 1984 467 472
    • (1984) BIT , vol.24 , pp. 467-472
    • Eldén, L.1
  • 39
    • 0001840812 scopus 로고
    • Regularization methods for the stable solution of inverse problems
    • H.W. Engl Regularization methods for the stable solution of inverse problems Surv. Math. Ind. 3 1993 71 143
    • (1993) Surv. Math. Ind. , vol.3 , pp. 71-143
    • Engl, H.W.1
  • 40
    • 0000797172 scopus 로고
    • A posteriori parameter choice for general regularization methods for solving linear ill-posed problems
    • H.W. Engl, and H. Gfrerer A posteriori parameter choice for general regularization methods for solving linear ill-posed problems Appl. Numer. Math. 4 1988 395 417
    • (1988) Appl. Numer. Math. , vol.4 , pp. 395-417
    • Engl, H.W.1    Gfrerer, H.2
  • 42
    • 0003357633 scopus 로고    scopus 로고
    • Convergence rate results for iterative methods for solving nonlinear ill-posed problems
    • H.W. Engl, and O. Scherzer Convergence rate results for iterative methods for solving nonlinear ill-posed problems D. Colton, H. Engl, A. Louis, J. McLaughlin, W. Rundell, Survey on Solution Methods for Inverse Problems 2000 Springer New York 7 34
    • (2000) Survey on Solution Methods for Inverse Problems , pp. 7-34
    • Engl, H.W.1    Scherzer, O.2
  • 44
  • 45
    • 1642528910 scopus 로고    scopus 로고
    • A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems
    • C.G. Farquharson, and D.W. Oldenburg A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems Geophys. J. Int. 156 2004 411 425 (Pubitemid 38398606)
    • (2004) Geophysical Journal International , vol.156 , Issue.3 , pp. 411-425
    • Farquharson, C.G.1    Oldenburg, D.W.2
  • 46
    • 0040009224 scopus 로고
    • Bayesian analysis in inverse problems
    • B.G. Fitzpatrick Bayesian analysis in inverse problems Inverse Probl. 7 1991 675 702
    • (1991) Inverse Probl. , vol.7 , pp. 675-702
    • Fitzpatrick, B.G.1
  • 47
    • 84966214028 scopus 로고
    • An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates
    • H. Gfrerer An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates Math. Comput. 49 1987 507 522
    • (1987) Math. Comput. , vol.49 , pp. 507-522
    • Gfrerer, H.1
  • 48
    • 0002882706 scopus 로고
    • A fast "monte-Carlo cross-validation" procedure for large least squares problems with noisy data
    • D. Girard A fast "Monte-Carlo cross-validation" procedure for large least squares problems with noisy data Numer. Math. 56 1989 1 23
    • (1989) Numer. Math. , vol.56 , pp. 1-23
    • Girard, D.1
  • 49
    • 44449103413 scopus 로고
    • On the quasioptimality principle for linear ill-posed problems in Hilbert space
    • V. Glasko, and Y. Kriksin On the quasioptimality principle for linear ill-posed problems in Hilbert space Vychisl. Mat. Mat. Fiz. 24 1984 1603 1613
    • (1984) Vychisl. Mat. Mat. Fiz. , vol.24 , pp. 1603-1613
    • Glasko, V.1    Kriksin, Y.2
  • 50
    • 0034561754 scopus 로고    scopus 로고
    • Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations
    • DOI 10.1007/s440-000-8013-3
    • A. Goldenshluger, and S. Pereverzev Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations Probl. Th. Rel. Fields 118 2000 169 186 (Pubitemid 33228650)
    • (2000) Probability Theory and Related Fields , vol.118 , Issue.2 , pp. 169-186
    • Goldenshluger, A.1    Pereverzev, S.V.2
  • 51
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G.H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21 (1979) 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 52
    • 0031498439 scopus 로고    scopus 로고
    • Generalized cross-validation for large scale problems
    • G.H. Golub, and U. von Matt Generalized cross-validation for large scale problems J. Comput. Graph. Stat. 6 1997 1 34
    • (1997) J. Comput. Graph. Stat. , vol.6 , pp. 1-34
    • Golub, G.H.1    Von Matt, U.2
  • 53
    • 0038961579 scopus 로고
    • LR algorithm with Laguerre shift for symmetric tridiagonal matrices
    • J. Grad, and E. Zakrajšek LR algorithm with Laguerre shift for symmetric tridiagonal matrices Comput. J. 15 1972 268 270
    • (1972) Comput. J. , vol.15 , pp. 268-270
    • Grad, J.1    Zakrajšek, E.2
  • 55
    • 38249023906 scopus 로고
    • Regularization of ill-posed problems: Optimal parameter choice in finite dimensions
    • C.W. Groetsch, and A. Neubauer Regularization of ill-posed problems: optimal parameter choice in finite dimensions J. Approx. Th. 58 1989 184 200
    • (1989) J. Approx. Th. , vol.58 , pp. 184-200
    • Groetsch, C.W.1    Neubauer, A.2
  • 56
    • 0010762594 scopus 로고
    • Asymptotic convergence rate of Arcangeli's method for ill-posed problems
    • C.W. Groetsch, and E. Schock Asymptotic convergence rate of Arcangeli's method for ill-posed problems Appl. Anal. 18 1984 175 182
    • (1984) Appl. Anal. , vol.18 , pp. 175-182
    • Groetsch, C.W.1    Schock, E.2
  • 58
    • 0002515748 scopus 로고
    • The computation of generalized cross-validation functions through Householder tridiagonalization with applications to the fitting of interaction spline models
    • C. Gu, D.M. Bates, Z. Chen, and G. Wahba The computation of generalized cross-validation functions through Householder tridiagonalization with applications to the fitting of interaction spline models SIAM J. Matrix Anal. Appl. 10 1989 457 480
    • (1989) SIAM J. Matrix Anal. Appl. , vol.10 , pp. 457-480
    • Gu, C.1    Bates, D.M.2    Chen, Z.3    Wahba, G.4
  • 59
    • 0033933643 scopus 로고    scopus 로고
    • A GCV based method for nonlinear ill-posed problems
    • E. Haber, and D.W. Oldenburg A GCV based method for nonlinear ill-posed problems Comput. Geosci. 4 2000 41 63
    • (2000) Comput. Geosci. , vol.4 , pp. 41-63
    • Haber, E.1    Oldenburg, D.W.2
  • 60
    • 73449093887 scopus 로고    scopus 로고
    • On minimization strategies for choice of the regularization parameter in ill-posed problems
    • U. Hämarik, R. Palm, and T. Raus On minimization strategies for choice of the regularization parameter in ill-posed problems Numer. Funct. Anal. Optim. 30 2009 924 950
    • (2009) Numer. Funct. Anal. Optim. , vol.30 , pp. 924-950
    • Hämarik, U.1    Palm, R.2    Raus, T.3
  • 61
    • 5844423089 scopus 로고    scopus 로고
    • On the a posteriori parameter choice in regularization methods
    • U. Hämarik, and T. Raus On the a posteriori parameter choice in regularization methods Proc. Estonian Acad. Sci. Phys. Math. 48 1999 133 145
    • (1999) Proc. Estonian Acad. Sci. Phys. Math. , vol.48 , pp. 133-145
    • Hämarik, U.1    Raus, T.2
  • 62
    • 33745766913 scopus 로고    scopus 로고
    • On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data
    • DOI 10.1163/156939406777340928
    • U. Hämarik, and T. Raus On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data J. Inverse Ill-Posed Probl. 14 2006 251 266 (Pubitemid 44017419)
    • (2006) Journal of Inverse and Ill-Posed Problems , vol.14 , Issue.3 , pp. 251-266
    • Hamarik, U.1    Raus, T.2
  • 63
    • 73449110977 scopus 로고    scopus 로고
    • About the balancing principle for choice of the regularization parameter
    • U. Hämarik, and T. Raus About the balancing principle for choice of the regularization parameter Numer. Funct. Anal. Optim. 30 2009 951 970
    • (2009) Numer. Funct. Anal. Optim. , vol.30 , pp. 951-970
    • Hämarik, U.1    Raus, T.2
  • 64
    • 21944442815 scopus 로고    scopus 로고
    • On the monotone error rule for parameter choice in iterative and continuous regularization methods
    • U. Hämarik, and U. Tautenhahn On the monotone error rule for parameter choice in iterative and continuous regularization methods BIT 41 2001 1029 1038 (Pubitemid 33752965)
    • (2001) BIT Numerical Mathematics , vol.41 , Issue.5 , pp. 1029-1038
    • Hamarik, U.1
  • 66
    • 1542498779 scopus 로고    scopus 로고
    • Limitations of the L-curve method in ill-posed problems
    • M. Hanke Limitations of the L-curve method in ill-posed problems BIT 36 1996 287 301 (Pubitemid 126419071)
    • (1996) BIT Numerical Mathematics , vol.36 , Issue.2 , pp. 287-301
    • Hanke, M.1
  • 67
    • 0001273835 scopus 로고
    • Regularization methods for large-scale problems
    • M. Hanke, and P.C. Hansen Regularization methods for large-scale problems Surv. Math. Ind. 3 1993 253 315
    • (1993) Surv. Math. Ind. , vol.3 , pp. 253-315
    • Hanke, M.1    Hansen, P.C.2
  • 68
    • 0042208667 scopus 로고    scopus 로고
    • A general heuristic for choosing the regularization parameter in ill-posed problems
    • M. Hanke, and T. Raus A general heuristic for choosing the regularization parameter in ill-posed problems SIAM J. Sci. Comput. 17 1996 956 972 (Pubitemid 126621187)
    • (1996) SIAM Journal of Scientific Computing , vol.17 , Issue.4 , pp. 956-972
    • Hanke, M.1    Raus, T.2
  • 69
    • 0000570697 scopus 로고
    • Analysis of discrete ill-posed problems by means of the L-curve
    • P.C. Hansen Analysis of discrete ill-posed problems by means of the L-curve SIAM Rev. 34 1992 561 580
    • (1992) SIAM Rev. , vol.34 , pp. 561-580
    • Hansen, P.C.1
  • 70
    • 13344267706 scopus 로고
    • Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems
    • P.C. Hansen Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems Numer. Algorithms 6 1994 1 35
    • (1994) Numer. Algorithms , vol.6 , pp. 1-35
    • Hansen, P.C.1
  • 72
    • 0000236333 scopus 로고    scopus 로고
    • The L-curve and its use in the numerical treatment of inverse problems
    • P.C. Hansen The L-curve and its use in the numerical treatment of inverse problems P.R. Johnstone, Computational Inverse Problems in Electrocardiography 2001 WIT Press Southampton 119 142
    • (2001) Computational Inverse Problems in Electrocardiography , pp. 119-142
    • Hansen, P.C.1
  • 73
  • 74
    • 33645036956 scopus 로고    scopus 로고
    • Exploiting residual information in the parameter choice for discrete ill-posed problems
    • DOI 10.1007/s10543-006-0042-7
    • P.C. Hansen, M.E. Kilmer, and R.H. Kjeldsen Exploiting residual information in the parameter choice for discrete ill-posed problems BIT 46 2006 41 59 (Pubitemid 43417398)
    • (2006) BIT Numerical Mathematics , vol.46 , Issue.1 , pp. 41-59
    • Hansen, P.C.1    Kilmer, M.E.2    Kjeldsen, R.H.3
  • 75
    • 0001632418 scopus 로고
    • The use of the L-curve in the regularization of discrete ill-posed problems
    • P.C. Hansen, and D.P. O'Leary The use of the L-curve in the regularization of discrete ill-posed problems SIAM J. Sci. Comput. 14 1993 1487 1503
    • (1993) SIAM J. Sci. Comput. , vol.14 , pp. 1487-1503
    • Hansen, P.C.1    O'Leary, D.P.2
  • 76
    • 36749089116 scopus 로고    scopus 로고
    • Convergence rate for the Bayesian approach to linear inverse problems
    • DOI 10.1088/0266-5611/23/6/012, PII S0266561107373334
    • A. Hofinger, and H.K. Pikkarainen Convergence rate for the Bayesian approach to linear inverse problems Inverse Probl. 23 2007 2469 2484 (Pubitemid 350212310)
    • (2007) Inverse Problems , vol.23 , Issue.6 , pp. 2469-2484
    • Hofinger, A.1    Pikkarainen, H.K.2
  • 78
    • 0000462797 scopus 로고
    • A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines
    • M. Hutchinson A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines Commun. Stat. Simul. Comput. 18 1989 1059 1076
    • (1989) Commun. Stat. Simul. Comput. , vol.18 , pp. 1059-1076
    • Hutchinson, M.1
  • 79
    • 0002970891 scopus 로고
    • Smoothing noisy data with spline functions
    • M.F. Hutchinson, and F.R. de Hoog Smoothing noisy data with spline functions Numer. Math. 47 1985 99 106
    • (1985) Numer. Math. , vol.47 , pp. 99-106
    • Hutchinson, M.F.1    De Hoog, F.R.2
  • 80
    • 0030682936 scopus 로고    scopus 로고
    • Generalized cross validation for wavelet thresholding
    • PII S016516849600148X
    • M. Jansen, M. Malfait, and A. Bultheel Generalized cross validation for wavelet thresholding Signal Process. 56 1997 33 44 (Pubitemid 127398556)
    • (1997) Signal Processing , vol.56 , Issue.1 , pp. 33-44
    • Jansen, M.1    Malfait, M.2    Bultheel, A.3
  • 81
    • 58649102060 scopus 로고    scopus 로고
    • On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems
    • Q. Jin, and U. Tautenhahn On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems Numer. Math. 111 2009 509 558
    • (2009) Numer. Math. , vol.111 , pp. 509-558
    • Jin, Q.1    Tautenhahn, U.2
  • 82
    • 0034373413 scopus 로고    scopus 로고
    • On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems
    • Q.n. Jin On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems Math. Comput. 69 2000 1603 1623
    • (2000) Math. Comput. , vol.69 , pp. 1603-1623
    • Q, N.J.1
  • 83
    • 0039447792 scopus 로고    scopus 로고
    • On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems
    • Q.n. Jin, and Z.y. Hou On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems Numer. Math. 83 1999 139 159
    • (1999) Numer. Math. , vol.83 , pp. 139-159
    • Jin, Q.N.1    Hou, Z.Y.2
  • 84
    • 0034283123 scopus 로고    scopus 로고
    • Selecting the corner in the L-curve approach to Tikhonov regularization
    • P.R. Johnstone, and R.M. Gulrajani Selecting the corner in the L-curve approach to Tikhonov regularization IEEE Trans. Biomed. Eng. 47 2000 1293 1296
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , pp. 1293-1296
    • Johnstone, P.R.1    Gulrajani, R.M.2
  • 87
    • 0035537408 scopus 로고    scopus 로고
    • Choosing regularization parameters in iterative methods for ill-posed problems
    • M.E. Kilmer, and D.P. O'Leary Choosing regularization parameters in iterative methods for ill-posed problems SIAM J. Matrix Anal. Appl. 22 2001 1204 1221
    • (2001) SIAM J. Matrix Anal. Appl. , vol.22 , pp. 1204-1221
    • Kilmer, M.E.1    O'Leary, D.P.2
  • 88
    • 54749153001 scopus 로고    scopus 로고
    • On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization
    • S. Kindermann, and A. Neubauer On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization Inverse Probl. Imaging 2 2008 291 299
    • (2008) Inverse Probl. Imaging , vol.2 , pp. 291-299
    • Kindermann, S.1    Neubauer, A.2
  • 89
    • 0001355852 scopus 로고
    • The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters
    • R. Kohn, C.F. Ansley, and D. Tharm The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters J. Am. Stat. Assoc. 86 1991 1042 1050
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 1042-1050
    • Kohn, R.1    Ansley, C.F.2    Tharm, D.3
  • 90
    • 0036746656 scopus 로고    scopus 로고
    • p, generalized maximum likelihood, and extended exponential criteria: A geometric approach
    • p, generalized maximum likelihood, and extended exponential criteria: a geometric approach J. Am. Stat. Assoc. 97 2002 766 782
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 766-782
    • Kou, S.C.1    Efron, B.2
  • 91
    • 0040426799 scopus 로고
    • Gaussian measure in Hilbert space and applications in numerical analysis
    • F.M. Larkin Gaussian measure in Hilbert space and applications in numerical analysis Rocky Mt. J. Math. 2 1972 379 421
    • (1972) Rocky Mt. J. Math. , vol.2 , pp. 379-421
    • Larkin, F.M.1
  • 93
    • 49349130017 scopus 로고
    • Justification of the choice of regularization parameter according to quasi-optimality and quotient criteria
    • A. Leonov Justification of the choice of regularization parameter according to quasi-optimality and quotient criteria U.S.S.R. Comput. Math. Math. Phys. 18 1979 1 15
    • (1979) U.S.S.R. Comput. Math. Math. Phys. , vol.18 , pp. 1-15
    • Leonov, A.1
  • 94
    • 0000012624 scopus 로고
    • On a problem of adaptive estimation in Gaussian white noise
    • O. Lepskij On a problem of adaptive estimation in Gaussian white noise Theor. Probab. Appl. 35 1990 454 466
    • (1990) Theor. Probab. Appl. , vol.35 , pp. 454-466
    • Lepskij, O.1
  • 95
    • 0001182369 scopus 로고
    • L and generalized cross-validation in ridge regression with application to spline smoothing
    • L and generalized cross-validation in ridge regression with application to spline smoothing Ann. Stat. 14 1986 1101 1112
    • (1986) Ann. Stat. , vol.14 , pp. 1101-1112
    • Li, K.C.1
  • 96
    • 0001462696 scopus 로고
    • L, cross-validation and generalized cross-validation: Discrete index set
    • L, cross-validation and generalized cross-validation: Discrete index set Ann. Stat. 15 1987 958 975
    • (1987) Ann. Stat. , vol.15 , pp. 958-975
    • Li, K.C.1
  • 97
    • 84966254921 scopus 로고
    • Convergence rates for regularized solutions
    • M.A. Lukas Convergence rates for regularized solutions Math. Comput. 51 1988 107 131
    • (1988) Math. Comput. , vol.51 , pp. 107-131
    • Lukas, M.A.1
  • 98
    • 21344495243 scopus 로고
    • Asymptotic optimality of generalized cross-validation for choosing the regularization parameter
    • M.A. Lukas Asymptotic optimality of generalized cross-validation for choosing the regularization parameter Numer. Math. 66 1993 41 66
    • (1993) Numer. Math. , vol.66 , pp. 41-66
    • Lukas, M.A.1
  • 99
    • 84974313084 scopus 로고
    • On the discrepancy principle and generalised maximum likelihood for regularisation
    • M.A. Lukas On the discrepancy principle and generalised maximum likelihood for regularisation Bull. Aust. Math. Soc. 52 1995 399 424
    • (1995) Bull. Aust. Math. Soc. , vol.52 , pp. 399-424
    • Lukas, M.A.1
  • 100
    • 3342939830 scopus 로고    scopus 로고
    • Asymptotic behaviour of the minimum bound method for choosing the regularization parameter
    • M.A. Lukas Asymptotic behaviour of the minimum bound method for choosing the regularization parameter Inverse Probl. 14 1998 149 159 (Pubitemid 128555638)
    • (1998) Inverse Problems , vol.14 , Issue.1 , pp. 149-159
    • Lukas, M.A.1
  • 101
    • 0001595602 scopus 로고    scopus 로고
    • Comparisons of parameter choice methods for regularization with discrete noisy data
    • M.A. Lukas Comparisons of parameter choice methods for regularization with discrete noisy data Inverse Probl. 14 1998 161 184 (Pubitemid 128555639)
    • (1998) Inverse Problems , vol.14 , Issue.1 , pp. 161-184
    • Lukas, M.A.1
  • 102
    • 33749009570 scopus 로고    scopus 로고
    • Robust generalized cross-validation for choosing the regularization parameter
    • DOI 10.1088/0266-5611/22/5/021, PII S026656110618764X, 021
    • M.A. Lukas Robust generalized cross-validation for choosing the regularization parameter Inverse Probl. 22 2006 1883 1902 (Pubitemid 44444683)
    • (2006) Inverse Problems , vol.22 , Issue.5 , pp. 1883-1902
    • Lukas, M.A.1
  • 103
    • 44449133545 scopus 로고    scopus 로고
    • Strong robust generalized cross-validation for choosing the regularization parameter
    • M.A. Lukas Strong robust generalized cross-validation for choosing the regularization parameter Inverse Probl. 24 2008 034006 16
    • (2008) Inverse Probl. , vol.24 , pp. 034006
    • Lukas, M.A.1
  • 104
    • 79955568494 scopus 로고    scopus 로고
    • Robust GCV choice of the regularization parameter for correlated data
    • M.A. Lukas Robust GCV choice of the regularization parameter for correlated data J. Integral Equations Appl. 22 2010 519 547
    • (2010) J. Integral Equations Appl. , vol.22 , pp. 519-547
    • Lukas, M.A.1
  • 105
    • 0038339461 scopus 로고    scopus 로고
    • Geometry of linear ill-posed problems in variable Hilbert spaces
    • P. Mathé, and S.V. Pereverzev Geometry of linear ill-posed problems in variable Hilbert spaces Inverse Probl. 19 2003 789 803
    • (2003) Inverse Probl. , vol.19 , pp. 789-803
    • Mathé, P.1    Pereverzev, S.V.2
  • 106
    • 33744515791 scopus 로고    scopus 로고
    • Regularization of some linear ill-posed problems with discretized random noisy data
    • DOI 10.1090/S0025-5718-06-01873-4, PII S0025571806018734
    • P. Mathé, and S.V. Pereverzev Regularization of some linear ill-posed problems with discretized random noisy data Math. Comput. 75 2006 1913 1929 (Pubitemid 44719738)
    • (2006) Mathematics of Computation , vol.75 , Issue.256 , pp. 1913-1929
    • Mathe, P.1    Pereverzev, S.V.2
  • 107
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • V.A. Morozov On the solution of functional equations by the method of regularization Soviet Math. Dokl. 7 1966 414 417
    • (1966) Soviet Math. Dokl. , vol.7 , pp. 414-417
    • Morozov, V.A.1
  • 109
    • 0036397138 scopus 로고    scopus 로고
    • Generalized Arcangeli's discrepancy principles for a class of regularization methods for solving ill-posed problems
    • M.T. Nair, and M.P. Rajan Generalized Arcangeli's discrepancy principles for a class of regularization methods for solving ill-posed problems J. Inverse Ill-posed Probl. 10 2002 281 294 (Pubitemid 35178947)
    • (2002) Journal of Inverse and Ill-Posed Problems , vol.10 , Issue.3 , pp. 281-294
    • Nair, M.T.1    Rajan, M.P.2
  • 110
    • 38249027187 scopus 로고
    • An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error
    • A. Neubauer An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error Appl. Numer. Math. 4 1988 507 519
    • (1988) Appl. Numer. Math. , vol.4 , pp. 507-519
    • Neubauer, A.1
  • 111
    • 54749127344 scopus 로고    scopus 로고
    • The convergence of a new heuristic parameter selection criterion for general regularization methods
    • A. Neubauer The convergence of a new heuristic parameter selection criterion for general regularization methods Inverse Probl. 24 2008 055005 10
    • (2008) Inverse Probl. , vol.24 , pp. 055005
    • Neubauer, A.1
  • 112
    • 0009955854 scopus 로고    scopus 로고
    • Nonparametric Regression with Correlated Errors
    • DOI 10.1214/ss/1009213287
    • J. Opsomer, Y. Wang, and Y. Yang Nonparametric regression with correlated errors Stat. Sci. 16 2001 134 153 (Pubitemid 33636345)
    • (2001) Statistical Science , vol.16 , Issue.2 , pp. 134-153
    • Opsomer, J.1    Wang, Y.2    Yang, Y.3
  • 114
    • 84890326874 scopus 로고
    • A technique for the numerical solution of certain integral equations of the first kind
    • D. Phillips A technique for the numerical solution of certain integral equations of the first kind J. Assoc. Comput. Mach. 9 1962 84 97
    • (1962) J. Assoc. Comput. Mach. , vol.9 , pp. 84-97
    • Phillips, D.1
  • 116
    • 0008325004 scopus 로고
    • On the discrepancy principle for the solution of ill-posed problems
    • T. Raus On the discrepancy principle for the solution of ill-posed problems Uch. Zap. Tartu. Gos. Univ. 672 1984 16 26
    • (1984) Uch. Zap. Tartu. Gos. Univ. , vol.672 , pp. 16-26
    • Raus, T.1
  • 117
    • 0002729317 scopus 로고
    • The principle of the residual in the solution of ill-posed problems with nonselfadjoint operator
    • T. Raus The principle of the residual in the solution of ill-posed problems with nonselfadjoint operator Tartu Riikl. Ül. Toimetised 1985 12 20
    • (1985) Tartu Riikl. Ül. Toimetised , pp. 12-20
    • Raus, T.1
  • 118
    • 21944436340 scopus 로고
    • An a posteriori choice of the regularization parameter in case of approximately given error bound of data
    • Tartu University Tartu
    • T. Raus An a posteriori choice of the regularization parameter in case of approximately given error bound of data A. Pedas, Collocation and Projection Methods for Integral Equations and Boundary Value Problems 1990 Tartu University Tartu 73 87
    • (1990) Collocation and Projection Methods for Integral Equations and Boundary Value Problems , pp. 73-87
    • Raus, T.1
  • 119
    • 5844390290 scopus 로고
    • About regularization parameter choice in case of approximately given error bounds of data
    • Tartu University Tartu
    • T. Raus About regularization parameter choice in case of approximately given error bounds of data G. Vainikko, Methods for Solution of Integral Equations and Ill-posed Problems 1992 Tartu University Tartu
    • (1992) Methods for Solution of Integral Equations and Ill-posed Problems
    • Raus, T.1
  • 120
    • 34547683559 scopus 로고    scopus 로고
    • On the quasioptimal regularizaron parameter choices for solving ill-posed problems
    • DOI 10.1515/jiip.2007.023
    • T. Raus, and U. Hämarik On the quasioptimal regularization parameter choices for solving ill-posed problems J. Inverse Ill-posed Probl. 15 2007 419 439 (Pubitemid 47213847)
    • (2007) Journal of Inverse and Ill-Posed Problems , vol.15 , Issue.4 , pp. 419-439
    • Raus, T.1    Hamarik, U.2
  • 121
    • 73449089367 scopus 로고    scopus 로고
    • New rule for choice of the regularization parameter in (iterated) Tikhonov method
    • T. Raus, and U. Hämarik New rule for choice of the regularization parameter in (iterated) Tikhonov method Math. Model. Anal. 14 2009 187 198
    • (2009) Math. Model. Anal. , vol.14 , pp. 187-198
    • Raus, T.1    Hämarik, U.2
  • 122
    • 0000169154 scopus 로고    scopus 로고
    • A regularization parameter in discrete ill-posed problems
    • T. Reginska A regularization parameter in discrete ill-posed problems SIAM J. Sci. Comput. 17 1996 740 749
    • (1996) SIAM J. Sci. Comput. , vol.17 , pp. 740-749
    • Reginska, T.1
  • 123
    • 0000872265 scopus 로고
    • Making robust the cross-validatory choice of smoothing parameter in spline smoothing regression
    • T. Robinson, and R. Moyeed Making robust the cross-validatory choice of smoothing parameter in spline smoothing regression Commun. Stat. Theory Methods 18 1989 523 539
    • (1989) Commun. Stat. Theory Methods , vol.18 , pp. 523-539
    • Robinson, T.1    Moyeed, R.2
  • 124
    • 44449138211 scopus 로고    scopus 로고
    • Parameter selection for constrained solutions to ill-posed problems
    • B.W. Rust Parameter selection for constrained solutions to ill-posed problems Comput. Sci. Stat. 32 2000 333 347
    • (2000) Comput. Sci. Stat. , vol.32 , pp. 333-347
    • Rust, B.W.1
  • 125
    • 44449162474 scopus 로고    scopus 로고
    • Residual periodograms for choosing regularization parameters for ill-posed problems
    • B.W. Rust, and D.P. O'Leary Residual periodograms for choosing regularization parameters for ill-posed problems Inverse Probl. 24 2008 034005 30
    • (2008) Inverse Probl. , vol.24 , pp. 034005
    • Rust, B.W.1    O'Leary, D.P.2
  • 126
    • 0038006356 scopus 로고    scopus 로고
    • A cheaper way to compute generalized cross-validation as a stopping rule for linear stationary iterative methods
    • DOI 10.1198/1061860031815
    • R. Santos, and A. De Pierro A cheaper way to compute generalized cross-validation as a stopping rule for linear stationary iterative methods J. Comput. Graph. Stat. 12 2003 417 433 (Pubitemid 36802939)
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , Issue.2 , pp. 417-433
    • Santos, R.J.1    De Pierro, A.R.2
  • 127
    • 0027802743 scopus 로고
    • Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems
    • O. Scherzer, H. Engl, and K. Kunisch Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems SIAM J. Numer. Anal. 30 1993 1796 1838
    • (1993) SIAM J. Numer. Anal. , vol.30 , pp. 1796-1838
    • Scherzer, O.1    Engl, H.2    Kunisch, K.3
  • 128
    • 69049115182 scopus 로고    scopus 로고
    • Parameter tuning in pointwise adaptation using a propagation approach
    • V. Spokoiny, and C. Vial Parameter tuning in pointwise adaptation using a propagation approach Ann. Stat. 37 2009 2783 2807
    • (2009) Ann. Stat. , vol.37 , pp. 2783-2807
    • Spokoiny, V.1    Vial, C.2
  • 130
    • 0013298158 scopus 로고    scopus 로고
    • The use of monotonicity for choosing the regularization parameter in ill-posed problems
    • PII S0266561199035406
    • U. Tautenhahn, and U. Hämarik The use of monotonicity for choosing the regularization parameter in ill-posed problems Inverse Probl. 15 1999 1487 1505 (Pubitemid 129655864)
    • (1999) Inverse Problems , vol.15 , Issue.6 , pp. 1487-1505
    • Tautenhahn, U.1    Hamarik, U.2
  • 134
  • 135
    • 0034179341 scopus 로고    scopus 로고
    • On the best rate of adaptive estimation in some inverse problems
    • A. Tsybakov On the best rate of adaptive estimation in some inverse problems C.R. Acad. Sci., Paris, Ser. I, Math. 330 2000 835 840
    • (2000) C.R. Acad. Sci., Paris, Ser. I, Math. , vol.330 , pp. 835-840
    • Tsybakov, A.1
  • 136
    • 4243120846 scopus 로고    scopus 로고
    • Estimation of regularization parameters in multiple-image deblurring
    • R. Vio, P. Ma, W. Zhong, J. Nagy, L. Tenorio, and W. Wamsteker Estimation of regularization parameters in multiple-image deblurring Astron. Astrophys. 423 2004 1179 1186
    • (2004) Astron. Astrophys. , vol.423 , pp. 1179-1186
    • Vio, R.1    Ma, P.2    Zhong, W.3    Nagy, J.4    Tenorio, L.5    Wamsteker, W.6
  • 137
    • 0022662417 scopus 로고
    • Optimal choice of a truncation level for the truncated SVD solution of linear first kind integral equations when data are noisy
    • C.R. Vogel Optimal choice of a truncation level for the truncated SVD solution of linear first kind integral equations when data are noisy SIAM J. Numer. Anal. 23 1986 109 117 (Pubitemid 16474842)
    • (1986) SIAM Journal on Numerical Analysis , vol.23 , Issue.1 , pp. 109-117
    • Vogel, C.R.1
  • 138
    • 0001041472 scopus 로고    scopus 로고
    • Non-convergence of the L-curve regularization parameter selection method
    • C.R. Vogel Non-convergence of the L-curve regularization parameter selection method Inverse Probl. 12 1996 535 547 (Pubitemid 126655737)
    • (1996) Inverse Problems , vol.12 , Issue.4 , pp. 535-547
    • Vogel, C.R.1
  • 140
    • 0000544453 scopus 로고
    • Practical approximate solutions to linear operator equations when the data are noisy
    • G. Wahba Practical approximate solutions to linear operator equations when the data are noisy SIAM J. Numer. Anal. 14 1977 651 667
    • (1977) SIAM J. Numer. Anal. , vol.14 , pp. 651-667
    • Wahba, G.1
  • 141
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • G. Wahba A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem Ann. Stat. 13 1985 1378 1402
    • (1985) Ann. Stat. , vol.13 , pp. 1378-1402
    • Wahba, G.1
  • 143
    • 33749003036 scopus 로고
    • When is the optimal regularization parameter insensitive to the choice of the loss function?
    • G. Wahba, and Y.H. Wang When is the optimal regularization parameter insensitive to the choice of the loss function? Commun. Stat. Theory Methods 19 1990 1685 1700
    • (1990) Commun. Stat. Theory Methods , vol.19 , pp. 1685-1700
    • Wahba, G.1    Wang, Y.H.2
  • 144
    • 0032336499 scopus 로고    scopus 로고
    • Smoothing spline models with correlated random errors
    • Y. Wang Smoothing spline models with correlated random errors J. Am. Stat. Assoc. 93 1998 341 348
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 341-348
    • Wang, Y.1
  • 145
    • 0002373997 scopus 로고
    • The signal extraction approach to nonlinear regression and spline smoothing
    • W.E. Wecker, and C.F. Ansley The signal extraction approach to nonlinear regression and spline smoothing J. Am. Stat. Assoc. 78 1983 81 89
    • (1983) J. Am. Stat. Assoc. , vol.78 , pp. 81-89
    • Wecker, W.E.1    Ansley, C.F.2
  • 146
    • 0036554311 scopus 로고    scopus 로고
    • Data errors and an error estimation for ill-posed problems
    • A.G. Yagola, A.S. Leonov, and V.N. Titarenko Data errors and an error estimation for ill-posed problems Inverse Probl. Eng. 10 2002 117 129
    • (2002) Inverse Probl. Eng. , vol.10 , pp. 117-129
    • Yagola, A.G.1    Leonov, A.S.2    Titarenko, V.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.