메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Image classification using random forests and ferns

Author keywords

[No Author keywords available]

Indexed keywords

CALTECH; INTERNATIONAL CONFERENCES;

EID: 50649101132     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2007.4409066     Document Type: Conference Paper
Times cited : (1170)

References (27)
  • 1
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural Computation, 9:1545-1588, 1997.
    • (1997) Neural Computation , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 2
    • 0031275836 scopus 로고    scopus 로고
    • Joint induction of shape features and tree classifiers
    • Y. Amit, D. Geman, and K. Wilder. Joint induction of shape features and tree classifiers. IEEE PAMI, 19(11):1300-1305, 1997.
    • (1997) IEEE PAMI , vol.19 , Issue.11 , pp. 1300-1305
    • Amit, Y.1    Geman, D.2    Wilder, K.3
  • 3
    • 24644502276 scopus 로고    scopus 로고
    • Shape matching and object recognition using low distortion correspondence
    • A. Berg, T. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondence. CVPR, 2005.
    • (2005) CVPR
    • Berg, A.1    Berg, T.2    Malik, J.3
  • 5
    • 36849014901 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • A. Bosch, A. Zisserman, and X. Muñoz. Representing shape with a spatial pyramid kernel. CIVR, 2007.
    • (2007) CIVR
    • Bosch, A.1    Zisserman, A.2    Muñoz, X.3
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 34948855941 scopus 로고    scopus 로고
    • An exemplar model for learning object classes
    • O. Chum and A. Zisserman. An exemplar model for learning object classes. CVPR, 2007.
    • (2007) CVPR
    • Chum, O.1    Zisserman, A.2
  • 9
    • 33645146449 scopus 로고    scopus 로고
    • Histogram of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histogram of oriented gradients for human detection. CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 10
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In IEEE CVPR Workshop of Generative Model Based Vision, 2004.
    • (2004) IEEE CVPR Workshop of Generative Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 11
    • 85158044173 scopus 로고    scopus 로고
    • Image retrieval and classification using local distance functions
    • A. Frome, Y. Singer, and J. Malik. Image retrieval and classification using local distance functions. NIPS, 2006.
    • (2006) NIPS
    • Frome, A.1    Singer, Y.2    Malik, J.3
  • 12
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image features. ICCV, 2005.
    • (2005) ICCV
    • Grauman, K.1    Darrell, T.2
  • 13
    • 50649092636 scopus 로고    scopus 로고
    • G. Griffin, A. Holub, and P. Perona. Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366, California Institute of Technology, 2007.
    • G. Griffin, A. Holub, and P. Perona. Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366, California Institute of Technology, 2007.
  • 14
    • 84898020393 scopus 로고    scopus 로고
    • Patch-based object recognition using discriminatively trained gaussian mixtures
    • A. Hegerath, T. Deselaers, and H. Ney. Patch-based object recognition using discriminatively trained gaussian mixtures. BMVC., 2006.
    • (2006) BMVC
    • Hegerath, A.1    Deselaers, T.2    Ney, H.3
  • 15
    • 84898025694 scopus 로고    scopus 로고
    • Improvements of object detection using boosted histograms
    • I. Laptev. Improvements of object detection using boosted histograms. BMVC., 2006.
    • (2006) BMVC
    • Laptev, I.1
  • 16
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 17
    • 50649100629 scopus 로고    scopus 로고
    • Keypoint recognition using randomized trees
    • V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE PAMI, 2006.
    • (2006) IEEE PAMI
    • Lepetit, V.1    Fua, P.2
  • 18
    • 35148859368 scopus 로고    scopus 로고
    • Local ensemble kernel learning for object category recognition
    • Y. Lin, T. Liu, and C. Fuh. Local ensemble kernel learning for object category recognition. CVPR, 2007.
    • (2007) CVPR
    • Lin, Y.1    Liu, T.2    Fuh, C.3
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 20
    • 85044773291 scopus 로고    scopus 로고
    • Fast discriminative visual codebooks using randomized clustering forests
    • F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using randomized clustering forests. NIPS, 2006.
    • (2006) NIPS
    • Moosmann, F.1    Triggs, B.2    Jurie, F.3
  • 21
    • 34948862825 scopus 로고    scopus 로고
    • Fast keypoint recognition in ten lines of code
    • M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. CVPR, 2007.
    • (2007) CVPR
    • Ozuysal, M.1    Fua, P.2    Lepetit, V.3
  • 22
    • 50649094897 scopus 로고    scopus 로고
    • V. Perronnin, C. Dance, G. Csurka, andM. Bressan. Adapted vocabularies for generic visual categorization. ECCV, 2006.
    • V. Perronnin, C. Dance, G. Csurka, andM. Bressan. Adapted vocabularies for generic visual categorization. ECCV, 2006.
  • 23
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 24
    • 50649086329 scopus 로고    scopus 로고
    • Object class recognition at a glance
    • J. Winn and A. Criminisi. Object class recognition at a glance. CVPR, 2006.
    • (2006) CVPR
    • Winn, J.1    Criminisi, A.2
  • 25
    • 33845597355 scopus 로고    scopus 로고
    • The layout consistent random field for recognizing and segmenting partially occluded objects
    • J. Winn and J. Shotton. The layout consistent random field for recognizing and segmenting partially occluded objects. CVPR, 2006.
    • (2006) CVPR
    • Winn, J.1    Shotton, J.2
  • 26
    • 33845566162 scopus 로고    scopus 로고
    • SVM-KNN: Discriminative nearest neighbor classification for visual category recognition
    • H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. CVPR, 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.2    Maire, M.3    Malik, J.4
  • 27
    • 33846580425 scopus 로고    scopus 로고
    • J. Zhang, M. Marsza?ek, and C. Lazebnik, S. Schmid. Local features and kernels for classification of texture and object categories: a comprehensive study. IJCV, 2007.
    • J. Zhang, M. Marsza?ek, and C. Lazebnik, S. Schmid. Local features and kernels for classification of texture and object categories: a comprehensive study. IJCV, 2007.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.