-
1
-
-
51149107238
-
Meta random forests
-
P. Boinee, A. D. Angelis, and G. Foresti. Meta random forests. Internationnal Journal of Computationnal Intelligence, 2(3):138-147, 2005.
-
(2005)
Internationnal Journal of Computationnal Intelligence
, vol.2
, Issue.3
, pp. 138-147
-
-
Boinee, P.1
Angelis, A.D.2
Foresti, G.3
-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
0003802343
-
Classification and Regression Trees
-
New York
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Chapman and Hall (Wadsworth, Inc.): New York, 1984.
-
(1984)
Chapman and Hall (Wadsworth, Inc.)
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
5
-
-
0002117591
-
A further comparison of splitting rules for decisin-tree induction
-
W. Buntine and T. Niblett. A further comparison of splitting rules for decisin-tree induction. Machine Learning, 8:75-85, 1992.
-
(1992)
Machine Learning
, vol.8
, pp. 75-85
-
-
Buntine, W.1
Niblett, T.2
-
7
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees : Bagging, boosting, and randomization
-
T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees : Bagging, boosting, and randomization. Machine Learning, 40:139-157, 1999.
-
(1999)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.1
-
8
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Y. Freund and R. Schapire. Experiments with a new boosting algorithm. ICML, 1996.
-
(1996)
ICML
-
-
Freund, Y.1
Schapire, R.2
-
9
-
-
33646430006
-
Extremely randomized trees
-
P. Geurts, D. Ernst, and L.Wehenkel. Extremely randomized trees. Machine Learning, 36(1):3-42, 2006.
-
(2006)
Machine Learning
, vol.36
, Issue.1
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
10
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. Ho. The random subspace method for constructing decision forests. IEEE Trans. on PAMI, 20(8):832-844, 1998.
-
(1998)
IEEE Trans. on PAMI
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.1
-
12
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
13
-
-
0028405109
-
The importance of attribute selection measures in decision tree induction
-
W. Liu and A. White. The importance of attribute selection measures in decision tree induction. Machine Learning, 15(1):25-41, 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.1
, pp. 25-41
-
-
Liu, W.1
White, A.2
-
15
-
-
22944453097
-
Improving random forests
-
Springer, Berlin
-
M. Robnik-Sikonja. Improving random forests. ECML, LNAI 3210, Springer, Berlin, pages 359-370, 2004.
-
(2004)
ECML, LNAI 3210
, pp. 359-370
-
-
Robnik-Sikonja, M.1
|